Характеристики двигатель: 403 — Доступ запрещён – основные характеристики ДВС, сравнение параметров
Основные параметры двигателей автомобиля и их типы
Сердце автомобиля – ДВС или двигатель внутреннего сгорания, сложный технологический узел, обладающий множеством параметров. Их необходимо знать автолюбителю, чтобы ориентироваться при выборе автомобиля и ориентироваться во время эксплуатации и при ремонте. Наиболее значимыми параметрами являются:
- Объем камер сгорания – определяет показатель расхода топлива и в значительной степени мощности;
- Мощность – измеряется в киловаттах, но чаще используются лошадиные силы;
- Крутящий момент – тяговое усилие;
- Расход топлива
- Расход масла — тут важно учитывать тип, а порой и марку потребляемого масла.
Типовые параметры работы двигателей
Существует разделение ДВС на такие типы:
- Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
- Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
- Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;
В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.
Количество цилиндров двигателя
Количество цилиндров в ДВС определяют его мощность. В процессе технической и технологической эволюции их количество постепенно увеличилось с 1 до 16. С увеличением количества цилиндров сами агрегаты становились больше. Решением в части экономии пространства стала концепция расположения цилиндров.
Расположение цилиндров
Существует такое понятие, как конфигурация двигателя, она определяется компоновкой цилиндров, их расположением. Можно выделить 2 основных типа – рядный, когда цилиндры расположены в ряд и V-образный. Второй тип наиболее часто используется в современном автопроме. В этом случае цилиндры располагаются под углом и соединяются с коленчатым валом, образуя латинскую букву V. Такая компоновка имеет подвиды:
- W-образное расположение цилиндров;
- Y-образное расположение цилиндров.
Реже применяются компоновки, образующие форму латинских букв U и H.
Объем двигателя
Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем.
Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.
Материал, из которого изготавливается двигатель
Основным материалом в производстве двигателей являются металлы и их сплавы:
- Чугун – обеспечивает надежность и прочность, но минусом является внушительный вес;
- Алюминиевые сплавы – дают неплохую прочность, при этом легкие. Недостаток – большая стоимость;
- Магниевые сплавы – наиболее дорогостоящий материал, отличается высокой прочностью.
Многие производители автомобилей комбинируют материалы. Это во многом диктуется принадлежностью модели к тому или иному классу, что ставит ее в определенные ценовые рамки.
Мощность двигателя
Основополагающий параметр ДВС. Он измеряется в лошадиных силах, реже в кВт (киловатты). Мощность определяет скоростной предел и динамику разгона. Это еще один важный момент в условиях высокой конкуренции между производителями. Серьезная борьба идет в сегменте премиумных, спортивных автомобилей, а также в классе роадстеров и мускулкаров. Здесь разгон от 0 до 100 км/ч играет важную роль и может быть меньше 4 секунд.
Крутящий момент
Крутящий момент – параметр, определяющий тяговую силу мотора, обозначается Н/м (Ньютоны на метр). Значение непосредственно связано с мощностью и динамикой, хотя и не является для них определяющим. В значительной степени крутящий момент влияет на «эластичность» силового агрегата. Под этим словом подразумевается возможность ускоряться при низких оборотах. Соответственно, чем больше ускорение, тем эластичней мотор.
Расход топлива
Показатель потребления топлива двигателем зависит от его рабочего объема, а соответственно мощности. Основополагающую роль играет тип топливной системы:
- Карбюраторная;
- Инжекторная.
Измеряется показатель в литрах на 100 км. Техническая документация современных автомобилей предоставляет данные о расходе топлива при нескольких режимах движения: езда по городу, трассе, смешанный тип. В некоторых моделях, преимущественно внедорожниках, указывается расход при движении в условиях бездорожья, так как задействуются все 4 колеса и потребление бензина, дизеля значительно возрастает.
Тип топлива
ДВС могут потреблять разные виды топлива, но в основном используются:
- Бензин – продукт переработки нефти-сырца или вторичной перегонки нефтепродуктов. Основополагающим показателем является октановое число, которое указывается в цифрах. Буквенное сочетание, стоящее перед цифрами «АИ» означает:
А – бензин автомобильный;
И – октановое число определено исследовательским способом. Если этой буквы в маркировки нет, значит, октановое число выведено моторным методом.
Российские стандарты предусматривают такие марки бензина: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее востребованными в настоящее время являются марки с октановым числом 92,95,98; - Дизель или дизельное топливо
– получается путем промышленного перегона нефти. В его состав входят 2 вещества:
1. Цетан – легковоспламеняющийся компонент, чем его содержание больше, тем выше качество топлива;
2. Метилнафталин – не горючий компонент.
Основополагающими характеристиками дизеля являются: прокачиваемость и воспламеняемость. В зависимости от спецификации подразделяется на: летнее, зимнее, арктическое (ориентировано на использование при экстремально низких температурах).
Также ДВС в качестве топлива может использовать газы: метан, пропан, бутан. Для этого на автомобиль устанавливаются специальные системы.
Расход масла
Показатель расхода масла указывается производителем автомобиля в технической документации к нему. Нормальным считается потребление смазки в соотношении 0,8–3% от потребляемого количества топлива. Также на этот показатель влияет размер двигателя, он увеличивается на больших, мощных агрегатах, особенно дизельных.
Различают расход масла:
- Штатный – испарение смазочного материала с цилиндров, выдавливание через картер газами, смазка компрессора турбины;
- Нештатный – течи уплотнений, потеря масла через сальники коленвала, маслосъемные поршневые кольца, перемычки поршня, когда происходит их разрушение.
К чрезмерному расходу приводит использование масла низкого качества и несоответствующей требованиям технической эксплуатации марки.
Ресурсная прочность
Ресурсная прочность – показатель, определяющий частоту проведения ТО. Измеряется пробегом. Оптимальное количество пройденных километров от 5000 до 30 000. Этот показатель дает возможность рассчитать максимальный срок эксплуатации силового агрегата.
Тип топливной системы
На бензиновые и дизельные моторы устанавливаются разные типы топливных систем.
Дизельные агрегаты оснащаются ТНВД (топливными насосами высокого давления). Это устройство считается устаревшим и ненадежным. Чаще всего оно используется совместно с форсунками, обладающими функциями насоса. Но сами по себе они не могут обеспечить стабильную работу двигателя.
Тип бензиновой системы впуска
Существует 2 разновидности топливных бензиновых систем: карбюраторная, инжекторная. Они отличаются конструктивным устройством, а также принципами подачи топлива в цилиндры:
- Карбюратор вливает бензин сплошным потоком, что затрудняет его смешивание с воздухом и детонацию. Это приводит к увеличенному расходу топлива, снижению технических характеристик мотора;
- Инжекторная система превращает топливо в мелкодисперсную субстанцию – распыляет его. Это дает ему возможность быстро смешиваться с воздухом внутри цилиндра и приводит к увеличению характеристик двигателя и уменьшению расхода топлива.
Тип бензиновой системы впрыска
Существует одноточечная и многоточечная система впрыска. Первая не используется на современных моторах, вторая, в свою очередь, многоточечная система бывает:
- Распределенной. Она обеспечивает стабильную работу силового агрегата, но не обеспечивает высокую динамику и не увеличивает мощность;
- Прямой. В этом случае обеспечивается оптимальный расход топлива, увеличивается мощность двигателя и его ресурсная прочность. Недостатком системы является нестабильность работы на малых оборотах. Также минусом можно считать высокую требовательность к качеству бензина.
Дизельная система впрыска
Классическая схема впрыска топлива дизельного ДВС выглядит так:
- ТНВД – топливный насос высокого давления подает горючее в рампу;
- В рампе дизельное топливо нагнетается и с помощью форсунок-насосов подается в камеру сгорания.
На сегодняшний день это наиболее надежная схема впрыска дизельного топлива.
Форсунки впрыска
По принципу работы форсунки впрыска бывают:
- Механические;
- Пьезотронные.
Последние обеспечивают плавную работу двигателя. Больше ни на какие характеристики мотора форсунки впрыска не влияют.
Количество клапанов
Клапана, их количество влияет на показатель мощности мотора. Считается, что при большем количестве клапанов, работа двигателя становится плавнее. Устанавливаются они на впуск и выпуск цилиндра от 2 до 5 штук. Недостатком большого количества клапанов является увеличенный расход топлива.
Компрессор
Главная функция компрессора – повышение мощности ДВС без увеличения его размеров. Это делается с помощью нагнетания в камеру сгорания большего объема воздуха, что позволяет делать взрыв топливной смеси более мощным. Устанавливается компрессор на впускную систему автомобиля.
Компрессор приводится в движение механическим способом через соединение с коленвалом. Это делается посредством ремня или цепи. Турбокомпрессор нагнетает воздух под действием потока газов, которые крутят турбину, отвечающую за подачу дополнительной порции атмосферной массы.
Компрессоры по принципу подачи воздуха делятся на:
- Центробежные – простая конструкция, где нагнетателем является крыльчатка;
- Роторные – воздух нагнетается кулачковыми валами;
- Двухвинтовые – функции нагнетателей выполняют винты, расположенные параллельно друг другу.
Система газораспределения
ГРМ или газораспределительный механизм отвечает за потоками газов в цилиндре. Он также выполняет функцию переключателя фаз процесса распределения. Принцип действия основан на блокировании и открывании впускных и выпускных отверстий камер сгораний. Это делается при помощи регулировочных элементов:
- Клапанов;
- Валов с приводами;
- Толкателей;
- Коромысел;
- Шлангов.
По принципу управления процессом распределения газов ГРМ разделяются на:
- Клапанные;
- Золотниковые;
- Поршневые.
Двигатель
Основные параметры двигателей
Сталкиваясь с необходимостью выбора нового автомобиля, современные автолюбители не всегда знают по каким параметрам оценивать то или иное транспортное средство. Самым главным устройством в автомобиле является двигатель внутреннего сгорания. По его характеристикам оценивают возможности всего автомобиля, однако самостоятельно разобраться в устройстве мотора достаточно сложно. Понятно, что начинающим водителям и водителям-непрофессионалам сложно выбрать нового железного «друга», ввиду не осведомленности их о важных параметрах силового агрегата. Для того чтобы немного понять устройство двигателя внутреннего сгорания и ответить на вопрос: «в чем заключается принцип его работы?», разберемся в характеристиках.
Количество цилиндров двигателя
Устройство двигателя внутреннего сгорания предусматривает наличие 2,4,8 или 16 цилиндров. Это серьезный показатель, т.к. большее количество цилиндров обеспечивает наиболее плавный прирост крутящего момента и значительное увеличение мощности. Автомобили, оснащенные одинаковым количеством цилиндров, не будут иметь одинаковую мощность. Это говорит о том, что один параметр не может характеризовать работу всего двигателя.
Расположение цилиндров
Производители легковых и грузовых транспортных средств в большинстве случаев располагают цилиндры в двух возможных вариантах – последовательно (рядно)-1 и V-образно (двухрядно)-2. Во втором случае механизмы устанавливаются по обе стороны коленчатого вала, и эффективность их установки напрямую зависит от угла развала. Чем больший угол имеют установленные цилиндры, тем ниже центр тяжести двигателя, тем эффективнее охлаждается двигатель и производится подача масла. Несмотря на достоинства, слишком большой угол расположения цилиндров приводит к снижению динамических параметров транспортного средства. Малый угол между механизмами вызывает частый и быстрый перегрев двигателя автомобиля.
Два основных вида отличаются между собой мощностью, размерами и весом.
Не так часто можно встретить транспортные средства с радикальным (наклон цилиндров – 180°)-3, W-образным (четырехрядное) и рядно-V-образным расположением цилиндров. Последний вариант расположения – результат комбинирования основных разновидностей; такая установка механизмов предусматривает последовательную установку цилиндров с наклоном в обе стороны коленчатого вала. Он оптимизирует процесс охлаждения двигательной системы.
Разработчики установили, что если в один ряд поставить четное количество цилиндров, автомобиль получит непревзойденные вибрационные и шумоподавляющие параметры.
Объем двигателя
Вместительность камер сгорания двигателя – это, пожалуй, один из самых основных характеристик, определяющих мощность и потребление вашего будущего железного «друга». Большой объем двигателя нуждается в большем количестве топлива. Для городского пользования оптимальный вариант объема движка – 1,5 и 1,6 литра.
Материал, из которого изготовлено устройство внутреннего сгорания
Существует как минимум три вида материалов, из которых изготавливаются силовые агрегаты :
- Чугун. Чугунные двигатели отличаются высокой прочностью и надежность, а также гарантируют долгий срок эксплуатации. Но, так же как и все чугунные изделия, мотор из данного материала имеет слишком большой вес, который ухудшает управляемость автомобиля.
- Алюминий, в отличие от чугуна, занимает не так много места и имеет небольшой вес, однако обеспечивает меньшую прочность, которая не так надежно проявляет себя в повседневной жизни.
- Магниевые сплавы. Такой материал в большинстве случаев используют на внедорожниках и автомобилях бизнес-класса. Такая выборочная установка объясняется легко: высокий уровень прочности и небольшой вес реализуется на мировом рынке за слишком высокую стоимость, и ее установка на обычные малолитражки будет экономически не выгодна.
В процессе эксплуатации транспортного средства для водителя находятся приоритетные характеристики, на которые впоследствии он и будет обращать внимание. К ним относятся выходные характеристики силового агрегата:
Мощность
Автомобильная мощность измеряется лошадиными силами (л.с.) или киловаттами (кВт).
Большое количество лошадиных сил говорит о малом времени разгона автомобиля и о возможности достижения наивысшего уровня максимальной скорости.
Крутящий момент
Крутящим моментом называется тяговое усилие, создаваемое силовым агрегатом пределе своих возможностей. Оно измеряется Ньютон-метрами (Н•м).
Величина крутящего момента говорит о возможности автомобиля быстро набирать скорость на малых оборотах.
Максимально допустимое количество оборотов коленчатого вала в минуту
Величина измеряется в оборотах в минуту (об/мин) и показывает, какое число оборотов может совершить коленчатый вал, не провоцируя при этом потери ресурсной прочности двигателя. Слишком высокое количество оборотов в минуту означает наличие у автомобиля динамичного и резкого характера.
Расходные характеристики ДВС также имеют место при выборе нового транспортного средства:
Расход топлива
Единица измерения – количество литров на 100 километров (л/100 км). При этом требуемое количество бензина или дизеля, необходимых для преодоления 100 километров в городе, на трассе и при поездках в смешанном режиме, не одинаково.
Тип топлива
Все современные автомобили имеют бензиновые или дизельные двигатели. При использовании бензина для заправки транспортного средства важно выбирать указанную в инструкции марку, не изменяя при этом октановое число. Понижение нормы октанового числа негативно влияет на ресурсную мощность и прочность двигателя, а его повышение вызывает увеличение прочности, снижение ресурса и увеличение процесса теплоотдачи, в результате чего возникнет перегрев мотора.
Расход масла
Для исправного автомобиля расход масла не должен превышать 1л/1000 км.
Выбирая моторное масло, нужно правильно расшифровывать его обозначения. В общих случаях, вид масла обозначается так – xxWxx. Первое число обозначает степень густоты масла, второе – его вязкость. Например, к синтетическим маслам можно отнести 0W40, 5W40, к полусинтетическим – 10W40, к минеральным – 15W40, 20W40. Чем больше густота и вязкость масла, тем выше прочность и надежность мотора.
Будьте внимательны, ибо можно с легкостью испортить двигатель, ведь масла 70W90 и 95W100 предназначены только для трансмиссионной системы.
Ресурсная прочность
Ресурсная прочность позволяет определить насколько часто ваше транспортное средство нуждается в в техническом обслуживании. Данный показатель обычно предусматривает 5000 – 30000 километров пробега.
При выборе железного «друга», автолюбитель должен иметь представление не только об узком круге определенных двигательных характеристик, но и о сложных, требующих понимания параметрах:
Тип топливной системы
Каждый современный автомобиль оснащен бензиновой или дизельной топливной системой. В зависимости от преимуществ, каждый автолюбитель подбирает себе нужный вариант автомобиля. В отличие от дизельной системы, бензиновая обеспечивает автомобилю большую мощность. Однако дизельная система, в свою очередь, значительно экономит топливо и отличаются большим крутящим моментом.
Тип бензиновой системы впуска
Автомобили могут иметь два типа системы впуска – инжекторную или карбюраторную. Электронная (инжекторная) система впуска позволяет добиваться большего КПД, поэтому устанавливается на большинство современных автомобилей.
Карбюраторная система предусматривает не распыляемое топливо в камере сгорания, а вбрасываемое струей в бензиновую систему. При этом у автомобиля наблюдается значительное повышение потребления топлива, ухудшается управляемость и нарушается работа мотора. Многокарбюраторные системы в используются достаточно редко и устанавливаются на тюнингуемые или на спортивные транспортные средства.
Тип бензиновой системы впрыска
Бензиновая система впрыска обеспечивает бесперебойную подачу топлива в камеры сгорания. Различают системы с одноточечным и многоточечным впрыском. Первый тип системы требует большего количества бензина и не гарантирует правильной работы двигателя, поэтому современные автомобили не оснащают одноточечной системой впрыска. Многоточечный метод впрыска создает в камере сгорания равномерную топливную смесь, которая позволяет автомобилю стабильно работать в любых условиях.
Есть еще один тип бензиновой системы впрыска – прямой. Такой метод подачи бензина увеличивает срок эксплуатации автомобиля, позволяет ему работать без перебоев и снижает расход топлива. Однако установка такой системы станет для автолюбителя дорогим удовольствием. Кроме того, она имеет существенные недостатки. Если вы все таки установили на автомобиль систему прямого впрыска бензина, то использовать нужно только высококачественное топливо. Также, стабильность работы двигателя может быть нарушена и при холодном старте могут появляться перебои.
Дизельная система впрыска (ДВС)
Устройство бензиновой системы впрыска гораздо легче для восприятия, чем дизельная. ДВС используется в комбинации двух устройств, обеспечивающих стабильность и надежность работы мотора.
Система ТНВД – это самая распространенная дизельная система, ставшая основой для остальных усовершенствованных систем.. Она используется только в вместе с системой насос-форсунок, за счет которых топливо подается в камеру сгорания. При использовании системы насос-форсунок без ТНВД затрудняется работа силового агрегата, что объясняет необходимость совмещения двух устройств.
Комбинация ТНВД и насос-форсунок распространена не только в России, но и в других странах мира. Дизельное топливо под давлением ТНВД подается в рампу, сжимается и впрыскивается в камеру сгорания. Система не только оптимизирует работу мотора автомобиля, но и значительно повышает его мощность, а также благополучно воздействует на количество потребляемого топлива.
Форсунки впрыска
Различают два вида форсунок– это механические и пьезотронные. Их вид не существенно влияет на общую характеристику двигателя. Однако большей популярностью пользуются пьезотронные форсунки. Они предают двигательной системе плавный рабочий цикл.
Количество клапанов
Количество клапанов на каждом автомобиле различно, их число определяется производителями. Обычно, на цилиндр устанавливают от 2 до 5 клапанов на впуске/выпуске. Количество клапанов влияет на стабильность работы и мощность двигателя. Чем большее количество клапанов установлено, тем плавнее и мощнее работа двигателя. Слишком большое количество клапанов увеличивает расход топлива.
Компрессор
Данный механизм создан для сжимания топлива, т.е. впускной смеси. Компрессоры могут быть механическими и турбонаддувными. Механический компрессор работает за счет коленчатого вала двигателя. Недостаток данной системы в том, что он приводит к значительной потере мощности и увеличению потребляемого топлива. Турбонаддувные компрессоры оснащены крыльчаткой турбины, раскручивающейся от давления выхлопных газов. Турбонаддувные механизмы более экономичны, они не затрачивают большого количества впускной смеси, но на малых оборотах уменьшают крутящий момент.
Для улучшения мощностных характеристик двигателей некоторых автомобилей, производители устанавливают несколько устройств. Последовательно установленные компрессоры обеспечивают бесперебойность в работе мотора, параллельно установленные компрессоры увеличивают характеристики автомобиля в пиковых режимах.
Система газораспределения
Газораспределительная система играет важную роль в работе автомобиля. Она напрямую влияет на работоспособность вашего железного «друга». Ее неисправность может повлечь за собой серьезные поломки, вот почему иногда важно знать ее составляющие. К ним относятся механизм распределения, распредвалы и привод.
Газораспределительная система может быть простой и динамической. Вторая разновидность системы обеспечивает свободное переключение режимов двигателя, выступает как стабилизатор процесса его работы. В динамической системе регулируются фазы и высота подъема клапана.
Современные автомобили могут иметь различное количество распредвалов, однако оптимальный вариант – это установка одного устройства на 8 клапанов мотора.
Ремень или цепь могут выступать приводом в устройстве системы газораспределения. Прежде чем выбирать наиболее удобный вариант, ознакомьтесь с их достоинствами и недостатками. Ремень системы может изнашиваться через равный промежуток времени, поэтому требует вложений в его замену. К основному достоинству можно отнести практически бесшумную работу устройства. В отличие от ремня, цепь вызывает неприятный металлический лязг. Однако цепь является наиболее прочным и надежным приводом, который хоть и имеет большую стоимость, но не изнашивается в течении длительного срока эксплуатации.
Силовые агрегаты автомобилей имеют еще ряд особенностей устройства двигателя, однако для водителя-непрофессионала они не имеют значения.
2.2. Нагрузочные характеристики двигателей
Нагрузочной характеристикой двигателя называются зависимости часового GT и удельного эффективного ge расходов топлива от эффективной мощности Ne или эффективного давления ре газов на поршень при постоянной угловой скорости ωе коленчатого вала. Нагрузочные характеристики служат для оценки топливной экономичности двигателя при различных режимах его работы.
На рис. 2.4 показана нагрузочная характеристика бензинового двигателя. Часовой расход топлива связан приблизительно линейной зависимостью с Ne и ре. Удельный эффективный расход топлива значительно возрастает при уменьшении его подачи из-за ухудшения рабочего процесса и снижения механического КПД двигателя. Экономичность двигателя тем выше, чем меньше ge и чем более полого проходит его кривая в интервале нагрузок двигателя, типичных для условий эксплуатации.
Рис. 2.4. Нагрузочная характеристика бензинового двигателя
Двигатель автомобиля работает в широком диапазоне значений угловой скорости коленчатого вала, поэтому измеряют не одну, а несколько его нагрузочных характеристик.2.3. Регулировочные характеристики двигателей
Регулировочной характеристикой двигателя называются зависимости эффективной мощности и удельного эффективного расхода топлива от его часового расхода, состава горючей смеси, угла опережения зажигания или впрыска топлива и т.д.
Регулировочные характеристики определяют оптимальные условия работы двигателя и оценивают качество его регулировки. Эти характеристики измеряют при полной и частичных нагрузках двигателя (при полной и частичной подаче топлива).
Рис. 2.5. Регулировочная характеристика бензинового двигателя по расходу топлива
Обычно снимают регулировочные характеристики двигателя по расходу топлива, показывающие изменение эффективной мощности и удельного эффективного расхода топлива в зависимости от его часового расхода при постоянной угловой скорости коленчатого вала.
На рис. 2.5 приведена регулировочная характеристика бензинового двигателя по
расходу топлива. Она имеет две характерные точки, одна из которых соответствует максимальной мощности, а другая — минимальному удельному эффективному расходу топлива.
Двигатель развивает максимальную мощность при часовом расходе топлива, соответствующем обогащенной горючей смеси (коэффициент избытка воздуха αи = 0,8…0,9), которая быстро горит. При обеднении горючей смеси мощность двигателя уменьшается из-за снижения скорости сгорания смеси. Наибольшую топливную экономичность двигателя обеспечивает часовой расход топлива, отвечающий обедненной горючей смеси (αи = 1,1… 1,2). При большем обеднении горючей смеси значительно уменьшается скорость ее горения, двигатель работает неустойчиво, резко падает его мощность и снижается топливная экономичность.
Следовательно, наиболее благоприятный для работы двигателя диапазон значений часового расхода топлива заключен между Gт, соответствующими минимальному удельному эффективному расходу топлива и максимальной мощности двигателя.
Эксплуатация двигателя за указанными пределами нежелательна вследствие снижения его мощности и топливной экономичности.
Контрольные вопросы
Какие виды характеристик различают у двигателя автомобиля и что они определяют?
Какие скоростные характеристики может иметь двигатель и в чем состоит их различие?
Какие основные точки имеет внешняя скоростная характеристика двигателя?
Какими способами можно определить внешнюю скоростную харак- теристику двигателя?
Почему в бензиновых двигателях грузовых автомобилей устанавли- вают ограничитель угловой скорости коленчатого вала?
Почему мощность и крутящий момент двигателя, установленного на автомобиле, на 10…20% меньше, чем указываемые в технических характеристиках, инструкциях, каталогах, проспектах и т.п.?
Двигатель 4A-FE (4A-GE) | Характеристики, проблемы, тюнинг
Характеристики двигателя Тойота 4A
Производство | Kamigo Plant Shimoyama Plant Deeside Engine Plant North Plant Tianjin FAW Toyota Engine’s Plant No. 1 |
Марка двигателя | Toyota 4A |
Годы выпуска | 1982-2002 |
Материал блока цилиндров | чугун |
Система питания | карбюратор/инжектор |
Тип | рядный |
Количество цилиндров | 4 |
Клапанов на цилиндр | 4/2/5 |
Ход поршня, мм | 77 |
Диаметр цилиндра, мм | 81 |
Степень сжатия | 8 8.9 9 9.3 9.4 9.5 10.3 10.5 11 (см. описание) |
Объем двигателя, куб.см | 1587 |
Мощность двигателя, л.с./об.мин | 78/5600 84/5600 90/4800 95/6000 100/5600 105/6000 110/6000 112/6600 115/5800 125/7200 128/7200 145/6400 160/7400 165/7600 170/6400 (см. описание) |
Крутящий момент, Нм/об.мин | 117/2800 130/3600 130/3600 135/3600 136/3600 142/3200 142/4800 131/4800 145/4800 149/4800 149/4800 190/4400 162/5200 162/5600 206/4400 (см. описание) |
Топливо | 92-95 |
Экологические нормы | — |
Вес двигателя, кг | 154 |
Расход топлива, л/100 км (для Celica GT) — город — трасса — смешан. | 10.5 7.9 9.0 |
Расход масла, гр./1000 км | до 1000 |
Масло в двигатель | 5W-30 10W-30 15W-40 20W-50 |
Сколько масла в двигателе | 3.0 — 4A-FE 3.0 — 4A-GE (Corolla, Corolla Sprinter, Marin0, Ceres, Trueno, Levin) 3.2 — 4A-L/LC/F 3.3 — 4A-FE (Carina до 1994, Carina E) 3.7 — 4A-GE/GEL |
Замена масла проводится, км | 10000 (лучше 5000) |
Рабочая температура двигателя, град. | — |
Ресурс двигателя, тыс. км — по данным завода — на практике | 300 300+ |
Тюнинг — потенциал — без потери ресурса | 300+ н.д. |
Двигатель устанавливался | Toyota Corolla Toyota Corona Toyota Carina Toyota Carina E Toyota Celica Toyota Avensis Toyota Caldina Toyota AE86 Toyota MR2 Toyota Corolla Ceres Toyota Corolla Levin Toyota Corolla Spacio Toyota Sprinter Toyota Sprinter Carib Toyota Sprinter Marino Toyota Sprinter Trueno Elfin Type 3 Clubman Chevrolet Nova Geo Prizm |
Неисправности и ремонт двигателя 4A-FE (4A-GE, 4A-GZE)
Параллельно со всем известными и популярными двигателями серии S, выпускалась малообъемная серия A и одним из самых ярких и популярных моторов серии стал двигатель 4A в различных вариациях. Изначально, это был одновальный карбюраторный маломощный движок, ничего особого из себя не представлявший.
По мере совершенствования, 4A получил сперва 16 клапанную головку, а позже и 20 клапанную, на злых распредвалах, впрыск, измененную систему впуска, другую поршневую, некоторые версии комплектовались механическим нагнетателем. Рассмотрим весь путь непрерывных доработок 4A.
Модификации двигателя Toyota 4A
1. 4A-C — первая карбюраторная версия мотора, 8 клапанная, мощностью 90 л.с. Предназначалась для Северной Америки. Выпускалась с 1983 по 1986 год.
2. 4A-L — аналог для европейского авторынка, степень сжатия 9.3, мощность 84 л.с.
3. 4A-LC — аналог для австралийского рынка, мощность 78 л.с. В производстве находился с 1987 по 1988 год.
4. 4A-E — инжекторная версия, степень сжатия 9, мощность 78 л.с. Годы производства: 1981-1988.
5. 4A-ELU — аналог 4A-E с катализатором, степень сжатия 9.3, мощность 100 л.с. Производился с 1983 по 1988 год.
6. 4A-F — карбюраторная версия с 16 клапанной головкой, степень сжатия 9.5, мощность 95 л.с. Производилась аналогичная версия с уменьшенным рабочим объемом до 1.5 л — 5А. Годы производства: 1987 — 1990.
7. 4A-FE — аналог 4A-F, вместо карбюратора используется ижекторная система подачи топлива, существует несколько генераций данного двигателя:
7.1 4A-FE Gen 1 — первый вариант с электронным впрыском топлива, мощность 100-102 л.с. Выпускался с 1987 по 1993 год.
7.2 4A-FE Gen 2 — второй вариант, изменены распредвалы, система впрыска, клапанная крышка получила оребрение, другая ШПГ, другой впуск. Мощность 100-110 л.с. Выпускался мотор с 93-го по 98-й год.
7.3. 4A-FE Gen 3 — последнее поколение 4A-FE, аналог Gen2 с небольшими коррективами на впуске и во впускном коллекторе. Мощность повышена до 115 л.с. Выпускалась для японского рынка с 1997 по 2001 год, а с 2000-го года на смену 4A-FE пришел новый 3ZZ-FE.
8. 4A-FHE — усовершенствованная версия 4A-FE, с другими распределительными валами, другим впуском и впрыском и прочим. Степень сжатия 9.5, мощность двигателя 110 л.с. Производился с 1990 по 1995 год и ставился на Toyota Carina и Toyota Sprinter Carib.
9. 4A-GE — традиционная тойотовская версия повышенной мощности, разработана при участии компании Yamaha и оснащены уже распределенным впрыском топлива MPFI. Серия GE, как и FE, пережила несколько рестайлингов:
9.1 4A-GE Gen 1 «Big Port» — первая версия, выпускалась с 1983 по 1987 г. Имеют доработанную ГБЦ на более верховых валах, впускной коллектор T-VIS с регулируемой геометрией. Степень сжатия 9.4, мощность 124 л.с., для стран с жесткими экологическими требованиями, мощность составляет 112 л.с.
9.2 4A-GE Gen 2 — вторая версия, степень сжатия повысилась до 10, мощность возросла до 125 л.с. Выпуск начался с 87-м, закончился в 1989 году.
9.3 4A-GE Gen 3 «Red Top»/»Small port» — очередная модификация, впускные каналы уменьшены (отсюда и название), заменена шатунно-поршневая группа, степень сжатия возросла до 10.3 , мощность составила 128 л.с. Годы производства: 1989-1992.
9.4 4A-GE Gen 4 20V «Silver Top» — четвертая генерация, главное новшество здесь, это переход на 20-ти клапанную ГБЦ (3 на впуск, 2 на выпуск) с верховыми валами, 4-х дроссельный впуск, появилась система изменения фаз газораспределения на впуске VVTi, изменен впускной коллектор, повышена степень сжатия до 10.5, мощность 160 л.с. при 7400 об/мин. Производился двигатель с 1991 по 1995 год.
9.5. 4A-GE Gen 5 20V «Black Top» — последняя версия злого атмосферника, увеличены заслонки дросселей, облегчены поршни, маховик, доработаны впускные и выпускные каналы, установлены еще более верховые валы, степень сжатия достигла 11, мощность поднялась до 165 л.с. при 7800 об/мин. Производился мотор с 1995 до 1998 года, преимущественно, для японского рынка.
10. 4A-GZE — аналог 4A-GE 16V с компрессором, ниже все генерации данного движка:
10.1 4A-GZE Gen 1 — компрессорный 4A-GE с давлением 0.6 бар, нагнетатель SC12. Использовались кованые поршни со степенью сжатия 8, впускной коллектор с изменяемой геометрией. Мощность на выходе 140 л.с., производился с 86-го по 90-й год.
10.2 4A-GZE Gen 2 — изменен впуск, повышена степень сжатия до 8.9, увеличено давление, теперь оно составляет 0.7 бар, мощность поднялась до 170 л.с. Производились движки с 1990 по 1995 год.
Неисправности и их причины
1. Большой расход топлива, в большинстве случаев, виновник лямбда зонд и проблема решается его заменой. При появлении сажи на свечах, черного дыма из выхлопной трубы, вибраций на холостом ходу, проверьте датчик абсолютного давления.
2. Вибрации и высокий расход топлива, скорей всего вам пора помыть форсунки.
3. Проблемы с оборотами, зависание, повышенные обороты. Проверяйте клапан холостого хода и чистите дроссельную заслонку, смотрите датчик положения дроссельной заслонки и все прийдет в норму.
4. Двигатель 4A не заводится, плавают обороты, здесь причина в датчике температуры двигателя, проверяйте.
5. Плавают обороты. Чистим блок дроссельной заслонки, КХХ, проверяем свечи, форсунки, клапан вентиляции картерных газов.
6. Глохнет мотор, смотрите топливный фильтр, бензонасос, трамблер.
7. Высокий расход масла. В принципе, заводом допускается серьезный расход (до 1 л на 1000 км), но если ситуация напрягает, тогда вас спасет замена колец и маслосьемных колпачков.
8. Стук двигателя. Обычно, стучат поршневые пальцы, если пробег большой, а клапана не регулировались, тогда отрегулируйте зазоры клапанов, данная процедура проводится раз в 100.000 км.
Кроме того, текут сальники коленвала, нередки проблемы с зажиганием и т.д. Все перечисленное встречается не столько из-за конструктивных просчетов, а сколько из-за огромного пробега и общей старости двигателя 4A, чтоб избежать всех этих проблем, нужно изначально, при покупке, искать максимально живой мотор. Ресурс хорошего 4A составляет не меньше 300.000 км.
Не рекомендуется покупать версии Lean Burn, работающие на обедненной смеси, имеющие более низкую мощность, некоторую капризность и повышенную стоимость расходников.
Стоит заметить, все вышеперечисленное характерно и для моторов созданных на базе 4А — 5А и 7А.
Тюнинг двигателя Toyota 4A-GE (4A-FE, 4A-GZE)
Чип-тюнинг. Атмо
Двигатели серии 4A рождены для тюнинга, именно на базе 4A-GE был создан всем известный 4A-GE TRD, в атмосферном варианте выдающий 240 л.с. и выкручивающийся до 12000 об/мин! Но для успешного тюнинга надо брать 4A-GE за основу, а не FE версию. Тюнинг 4A-FE идея мертвая изначально и заменой ГБЦ на 4A-GE здесь не помочь. Если чешутся руки доработать именно 4A-FE, тогда ваш выбор наддув, покупаете турбо кит, ставите на стандартную поршневую, дуете до 0.5 бар, получаете свои ~140 л.с. и ездите пока на развалится. Чтобы ездило долго и счастливо, нужно менять коленвал, всю ШПГ под низкую степень, доводить головку блока цилиндров, ставить большие клапана, форсунки, насос, проще говоря родной останется только блок цилиндров. И только потом ставить турбину и все сопутствующее, рационально?
Именно поэтому за основу всегда берется хороший 4AGE, здесь все проще: для GE первых поколений, берутся хорошие валы с фазой 264, толкатели стандартные, ставится прямоточный выхлоп и получаем в районе 150 л.с. Мало?
Убираем впускной коллектор T-VIS, берем валы с фазой 280+, с тюнинговыми пружинками и толкателями, отдаем ГБЦ на доработку, для Big Port доработка включает в себя шлифовку каналов, доводку камер сгорания, для Small Port еще и предварительную расточку впускных и выпускных каналов с установкой увеличенных клапанов, паук 4-2-1, настраиваем на Абит или Январь 7.2, это даст до 170 л.с.
Дальше, кованая поршневая под степень сжатия 11, валы фаза 304, 4-х дроссельный впуск, равнодлинный паук 4-2-1 и прямоточный выхлоп на трубе 63мм, мощность поднимется до 210 л.с.
Ставим сухой картер, меняем маслонасос на другой от 1G, валы максимальные — фаза 320, мощность дойдет до 240 л.с. и крутиться будет за 10000 об/мин.
Как будем дорабатывать компрессорный 4A-GZE… Проведем работы с ГБЦ (шлифовка каналов и камер сгорания), валы 264 фаза, выхлоп 63мм, настройка и около 20 лошадей запишем себе в плюс. Довести мощность до 200 сил позволит компрессор SC14 либо более производительный.
Турбина на 4A-GE/GZE
При турбировании 4AGE сразу же нужно понизить степень сжатия, путем установки поршней от 4AGZE, берем распредвалы с фазой 264, турбокит на ваш вкус и на 1 баре давление получим до 300 л.с. Для получение еще более высокой мощности, как и на злом атмо, нужно доводить ГБЦ, ставить кованый коленвал и поршневую под степень ~7.5, более производительный кит и дуть 1.5+ бар, получая свои 400+ л.с.
РЕЙТИНГ ДВИГАТЕЛЯ: 4
<<НАЗАД
Двигатели ABF и 9А VW
Характеристики двигателей ABF и 9A
Производство | Volkswagen |
Марка двигателя | EA113 |
Годы выпуска | 1988-2000 |
Материал блока цилиндров | чугун |
Система питания | инжектор |
Тип | рядный |
Количество цилиндров | 4 |
Клапанов на цилиндр | 4 |
Ход поршня, мм | 92.8 |
Диаметр цилиндра, мм | 82.5 |
Степень сжатия | 10.5 10.8 |
Объем двигателя, куб.см | 1984 |
Мощность двигателя, л.с./об.мин | 136/5800 150/6000 |
Крутящий момент, Нм/об.мин | 180/4400 180/4800 |
Топливо | 95 |
Экологические нормы | — |
Вес двигателя, кг | — |
Расход топлива, л/100 км (для Golf 3 GTI) — город — трасса — смешан. | 11.9 6.5 8.5 |
Расход масла, гр./1000 км | до 1000 |
Масло в двигатель | 5W-30 5W-40 5W-50 10W-40 |
Сколько масла в двигателе, л | 4.0 (9А) 4.3 |
Замена масла проводится, км | 15000 (лучше 7500) |
Рабочая температура двигателя, град. | — |
Ресурс двигателя, тыс. км — по данным завода — на практике | — 400+ |
Тюнинг, л.с. — потенциал — без потери ресурса | — н.д. |
Двигатель устанавливался | VW Golf 2/3 VW Jetta VW Passat B3/B4 VW Corrado VW Sharan SEAT Cordoba SEAT Ibiza SEAT Toledo |
Надежность, проблемы и ремонт двигателей ABF и 9А
В июле 1988 года начали продавать Volkswagen Passat B3 с 16-клапанным 2.0-литровым двигателем 9А. В основе этого мотора лежал 4-х цилиндровый чугунный низкий блок (высота 220 мм), в котором был установлен коленвал с ходом поршня 92.8 мм, шатуны длинной 144 мм и поршни диаметром 82.5 мм (высота поршней 30.2 мм). Это дает возможность получить 2 литра объема, а степень сжатия здесь 10.8.
Накрыли блок алюминиевой 16-клапанной головкой с двумя распредвалами. Диаметр впускных клапанов 32 мм, выпускных 28 мм, диаметр штока клапана 7 мм. Характеристики распредвалов 9А: эффективная фаза 200/226, подъем 9.0/10.3 мм. Вращает распредвалы ремень ГРМ, его срок службы 90 тыс. км, если вовремя его не заменить, то может произойти обрыв ремня. В таких случаях двигатель 9А гнет клапана.
Управляет мотором Bosch KE-Motronic.
Он развивал 136 л.с. при 5800 об/мин и крутящий момент 180 Нм при 4400 об/мин.
Ставили такой движок до 1994 года, но с 1992 года его начали менять на 16-клапанный ABF.
Двигатель ABF отличается от 9A высоким блоком цилиндров (236 мм), более длинными шатунами (159 мм), новыми поршнями (высота 31.6 мм) и степенью сжатия 10.5.
Головка также была немного изменена, диаметр выпускных клапанов уменьшился до 27 мм, а распредвалы заменили на более агрессивные. Характеристики распредвалов ABF: фаза 220/228, подъем 10.8/10.8 мм.
Блок управления здесь на Digifant 3.0, а с 1994 года это Digifant 3.2.
Это дало результат: мощность выросла до 150 л.с. при 6000 об/мин, крутящий момент 180 Нм при 4800 об/мин.
Эти моторы максимально близки к 1.8 литровым KR или PL. и к 2.0 литровым 8-ми клапанникам AGG и ADY.
Ставили ABF до 2000 года, но с 1997 года их начали менять на 1.8 турбо.
Недостатки и проблемы двигателей ABF и 9А
У этих моторов нет слабых мест, это типичные надежные двигатели, но они столько всего повидали на своем веку, что у вас может произойти любая неисправность в любое время дня и ночи. Если ваш мотор ест масло, то не нужно удивляться, вспомните, сколько ему лет и делайте нормальный капремонт.
Ресурс двигателей Volkswagen ABF и 9А был более 400 тыс. км, но сегодня они все его отъездили.
Тюнинг двигателей ABF и 9А
Атмо
Эти моторы можно немного раскачать в атмо режиме или надуть, если они пребывают в нормальном состоянии. Обычно для этого их переводят на Январь или на Megasquirt. Для более-менее бодрого атмосферника нужно купить 4-х дроссельный впуск от 4A-GE, топливную от Audi TT, сделать портинг ГБЦ, поставить распредвалы Schrick 276 (или около того) с разрезными шестернями, клапанные пружины, тарелки, легкий маховик, коллектор 4-2-1 и выпуск на 63 мм трубе. Это позволит получить чуть больше 200 л.с. на маховике.
Можно точить блок под поршень большего диаметра, ставить коленвал от дизеля, зажимать под степень сжатия 14+ и т.д., но это пустая трата денег и времени.
Турбо
Для постройки хорошего турбо ABF, нужно собрать нормальный низ на кованых поршнях под степень сжатия 8.5 (или на доработанных поршнях от двигателя 2Е), купить Н-образные шатуны, вкладыши ACL, стальную прокладку ГБЦ, шпильки ARP, сделать портинг головки, заменить тарелки и пружины клапанов, купить турбину TD05 от 4G63T с коллектором под ABF, интеркулер, все необходимые пайпинги, блоу-офф и буст контроллер, насос Walbro 255, форсунки 800 сс, сделать маслоподачу и маслослив, настроить все. Вы получите без проблем 300++ л.с.
Но надежней и быстрей будет купить б/у Golf GTI с хорошим мотором 2.0 TSI.
РЕЙТИНГ ДВИГАТЕЛЯ: 4+
<<НАЗАД
Двигатель 3S-FE (GE, FSE, GTE)
Характеристики двигателя Тойота 3S
Производство | Kamigo Plant Toyota Motor Manufacturing Kentucky |
Марка двигателя | Toyota 3S |
Годы выпуска | 1984-2007 |
Материал блока цилиндров | чугун |
Система питания | карбюратор/инжектор |
Тип | рядный |
Количество цилиндров | 4 |
Клапанов на цилиндр | 4 |
Ход поршня, мм | 86 |
Диаметр цилиндра, мм | 86 |
Степень сжатия | 8.5 8.8 9 9.2 9.8 10 10.3 11.1 11.5 (см. описание) |
Объем двигателя, куб.см | 1998 |
Мощность двигателя, л.с./об.мин | 111/5600 115/5600 122/5600 128/6000 130/6000 140/6200 150/6000 156/6600 179/7000 185/6000 190/7000 200/7000 212/7600 225/6000 245/6000 260/6200 (см. описание) |
Крутящий момент, Нм/об.мин | 166/3200 162/4400 169/4400 178/4400 178/4400 175/4800 192/4000 186/4800 192/4800 250/3600 210/6000 210/6000 220/6400 304/3200 304/4000 324/4400 (см. описание) |
Топливо | 95-98 |
Экологические нормы | — |
Вес двигателя, кг | 143 (3S-GE) |
Расход топлива, л/100 км (для Celica GT Turbo) — город — трасса — смешан. | 13.0 8.0 9.5 |
Расход масла, гр./1000 км | до 1000 |
Масло в двигатель | 5W-30 5W-40 5W-50 10W-30 10W-40 10W-50 10W-60 15W-40 15W-50 20W-20 |
Сколько масла в двигателе, л | 3.9 — 3S-GTE 1 Gen. 3.9 — 3S-FE/3S-GE 2 Gen 4.2 — 3S-GTE 2 Gen. 4.5 — 3S-GTE 3 Gen./4 Gen./5 Gen. 4.5 — 3S-GE 3 Gen./4 Gen. 5.1 — 3S-GE 5 Gen. |
Замена масла проводится, км | 10000 (лучше 5000) |
Рабочая температура двигателя, град. | 95 |
Ресурс двигателя, тыс. км — по данным завода — на практике | н.д. 300+ |
Тюнинг — потенциал — без потери ресурса | 350+ до 300 |
Двигатель устанавливался | Toyota Altezza Toyota Corona Toyota Camry Toyota Carina Toyota Carina E Toyota Celica Toyota Avensis Toyota Caldina Toyota RAV4 Toyota Vista Toyota Nadia Toyota Ipsum Toyota MR2 Toyota Town Ace Holden Apollo |
Неисправности и ремонт двигателя 3S-FE/3S-FSE/3S-GE/3S-GTE
Двигатель Toyota 3S один из самых массовых моторов S серии и Тойоты в целом, появился в 1984 году и выпускался до 2007 г. Двигатель 3S ременной, каждые 100 тыс. км ремень нужно менять. В течении всего срока производства, мотор неоднократно дорабатывался, модифицировался, и если первые модели были карбюраторные 3S-FC, то последние это турбо 3S-GTE мощностью в 260 л.с., но обо всем по порядку.
Модификации двигателя Toyota 3S
1. 3S-FC — карбюраторная вариация двигателя, ставилась на дешевых версиях автомобилей Camry V20 и Holden Apollo. Степень сжатия 9.8, мощность 111 л.с. Двигатель производился с 1986 по 1991 годы, встречается редко.
2. 3S-FE — инжекторная версия и основной двигатель серии 3S. Использовались две катушки зажигания, есть возможность заливать 92-й бензин, но лучше 95. Степень сжатия 9.8, мощность от 115 л.с. до 130 л.с. в зависимости от модели и прошивки. Мотор устанавливался с 1986 по 2000 год, на все, что ездит.
3. 3S-FSE (D4) — первый тойотовский двигатель с непосредственным впрыском топлива. Имеется система изменения фаз газораспределения VVTi на впускном валу, впускной коллектор с регулируемым поперечным сечением каналов, поршни с выемкой для направления смеси, измененные форсунки и свечи, электронная дроссельная заслонка, клапан EGR для повторного дожига отработанных газов. Степень сжатия 9.8, мощность 150 л.с. Несмотря на общую технологичность, данный мотор заслужил репутацию постоянно ломающегося и вечно проблемного движка, поломки ТНВД, EGR, проблемы с изменяемым впускным коллектором, который, время от времени, требует чистки, проблемы с катализатором, постоянно нужно следить и чистить форсунки, следить за состоянием свечей и т.д. Двигатель 3S-FSE устанавливался с 1997 года по 2003 год, когда был вытеснен новым 1AZ-FSE.
4. 3S-GE — усовершенствованная версия 3S-FE. Использовалась измененная ГБЦ (разработана при участии специалистов из Yamaha), на поршнях GE имеются цековки и в отличие от большинства моторов, здесь обрыв ремня ГРМ не ведет ко встрече поршней и клапанов, отсутствовал клапан EGR. За все время выпуска, мотор 5 раз подвергался изменениям:
4.1 3S-GE Gen 1 — первая генерация, выпускалась до 89 года, степень сжатия 9.2, слабая версия развивала 135 л.с., более мощная, оснащенная регулируемым впускным коллектором T-VIS, до 160 л.с.
4.2 3S-GE Gen 2 — вторая версия GE мотора, выпускалась до 93 года, в ней регулируемый впускной коллектор T-VIS был заменен на ACIS. Валы с фазой 244 и подъемом 8.5, степень сжатия 10, мощность подросла до 165 л.с.
4.3 3S-GE Gen 3 — третий вариант мотора, находился в производстве до 99 года, изменились распредвалы: для АКПП фаза 240/240 подъем 8.7/8.2, для МКПП фаза 254/240, подъем 9.8/8.2. Степень сжатия выросла до 10.3, мощность японской версии 180 л.с., экспортной 170 л.с.
4.4 3S-GE Gen 4 BEAMS/Red Top — четвертое поколение, производившееся в 1997 году. Добавилась система изменения фаз газораспределения VVTi, увеличились впускные (с 33.5 до 34.5 мм) и выпускные каналы (с 29 до 29.5 мм), изменились распредвалы, теперь это 248/248 с подъемом 8.56/8.31, степень сжатия 11.1, мощность достигла 200 л.с., на АКПП 190 л.с.
4.5 3S-GE Gen 5 — пятое, последнее поколение GE. Система изменения фаз газораспределения Dual VVT-i теперь на обоих валах, впускные и выпускные каналы как на Gen 1-3. Мощность 200 л.с.
Версия для МКПП имела широкие распредвалы, титановые клапаны, степень сжатия 11.5, увеличенные впускные (с 33.5 до 35 мм) и выпускные клапаны (с 29 до 29.5 мм). Мощность 210 л.с.
5. 3S-GTE. Параллельно с серией GE, производилась их турбо модификация — GTE.
5.1 3S-GTE Gen 1 — первая версия, выпускалась до 89 года. Представляет собой разжатый 3S-GE Gen1 до СЖ 8.5, с регулируемым впускным коллектором T-VIS, и установленной на него турбиной CT26. Мощность 185 л.с.
5.2 3S-GTE Gen 2 — вторая версия, валы фаза 236, подъем 8.2, турбина CT26 с двойным корпусом, степень сжатия 8.8, мощность 220 л.с и производился мотор до 93 года.
5.3 3S-GTE Gen 3 -третья версия, поменяли турбину на CT20b, выбросили коллектор T-VIS, распредвалы 240/236, подъем 8.7/8.2, СЖ 8.5, мощность 245 л.с. Производился до 99 года.
5.4 3S-GTE Gen 4 — последняя версия GTE движка и серии 3S в общем. Изменен принцип забора выхлопных газов, заменены распредвалы на 248/246 с подъемом 8.75/8.65, повышена степень сжатия до 9, мощность 260 л.с. Выпуск последнего мотора серии 3S был прекращен в 2007 году.
Неисправности и их причины
1. Выход из строя ТНВД на 3S-FSE, сопровождается попаданием бензина в картер и сильным износом ШПГ. Признаки: повышается уровень масла (масло пахнет бензином), автомобиль дергается, работает неравномерно, глохнет, обороты плавают. Решение: меняйте ТНВД.
2. Клапан EGR, это вечная проблема на всех двигателях с системой рециркуляции отработанных газов. С течением времени, при использовании некачественного бензина, клапан EGR закоксовывается, начинает клинить и со временем полностью перестает действовать, вместе с тем, плавают обороты, двигатель тупит, не едет и т.д. Проблема решается систематическими чистками клапана, либо его глушением.
3. Падают обороты, глохнет, не едет. Все проблемы с холостым ходом, в большинстве случаев, решаются чисткой блока дроссельной заслонки, если же не помогло, то чистим впускной коллектор. Кроме того, причиной может стать бензонасос и загрязненный воздушный фильтр.
4. Высокий расход топлива на 3S, иногда даже абсурный. Регулируйте зажигание, чистите форсунки, БДЗ, клапан холостого хода.
5. Вибрации. Устраняются заменой подушки двигателя, либо не работает цилиндр.
6. Греется 3S. Проблема кроется в крышке радиатора, меняйте.
В общем и целом, двигатель Toyota 3S хороший, при адекватном обслуживании ездит долго и достаточно резво. Ресурс, в нормальных условиях, легко переваливает за 300 тыс. км. Если не усложнять себе жизнь и не брать 3S-FSE, то проблем с движком не будет.
На базе 3S производились модификации с различными рабочими объемами, младший брат 4S — 1.8 л., расточенная версия 5S — 2.2 л.
В 2000 году появился новый мотор 1AZ-FE, который и заменил ветерана 3S.
Тюнинг двигателя Toyota 3S-FE/3S-FSE/3S-GE/3S-GTE
Чип-тюнинг. Атмо
Тойотовские двигатели 3S-GE и 3S-GTE отлично приспособлены к доработкам, подтверждением тому выступают ле-мановские моторы 3S-GT мощностью под 700 л.с., более простые 3S-FE/3S-FSE дорабатывать смысла нет, для повышения их отдачи придется заменить все, что только можно, возросшую нагрузку стоковый FE не выдержит, а учитывая возраст, тюнинг закончится капремонтом. Проще и дешевле заменить 3S-FE на 3S-GE/GTE.
Что по поводу GE, они и без нас с вами неплохо отжаты, чтоб двинуться дальше нужно ставить легкую кованую ШПГ, облегченный коленвал, все должно быть отбалансировано. Шлифуем ГБЦ, впускные выпускные каналы, доводим камеры сгорания, клапаны с титановыми тарелками, распредвалы с фазой 272, подъем 10.2 мм, выхлоп прямоточный на 63мм трубе, с пауком 4-2-1, Apexi S-AFC II. В сумме это даст до 25% прибавки л.с. и ваш 3S будет крутится за 8000 об/мин. Для дальнейших движений, нужно ставить валы с фазой за 300 и максимальным подъемом, разрезные шестерни, отключать VVTi, 4-х дроссельный впуск (от TRD например) и крутить за 9000 об/мин пока не развалится.
Турбина на 3S-GE/3S-GTE
Для беспроблемной эксплуатации GTE версии, просто делаем чип, получаем свои +30-40 л.с. и никаких вопросов. Чтоб получить серьезную мощность нужно убирать стандартную турбину, искать турбо кит с интеркулером под требуемую мощность (наиболее сбалансированный вариант это Garrett GT28) и в зависимости от этого выбирать более мощные форсунки (от 630сс), низ кованый (желательно), валы фаза 268, бензонасос от супры, выхлоп прямоток на 76 трубе, настройка AEM EMS. Конфиг покажет около 350 л.с. Дальнейшее повышение мощность возможно с использованием кита на базе Garrett GT30 или GT35, с усиленным низом, ездить будет быстро, громко, но не долго.
РЕЙТИНГ ДВИГАТЕЛЯ: 4
<<НАЗАД
Двигатель ВАЗ 2103 | Характеристики, масло, мощность, тюнинг
Характеристики двигателя 2103
Годы выпуска – (1972 – наше время)
Материал блока цилиндров – чугун
Система питания – карбюратор/инжектор
Тип – рядный
Количество цилиндров – 4
Клапанов на цилиндр – 2
Ход поршня – 80 мм
Диаметр цилиндра – 76 мм
Степень сжатия – 8,5
Объем двигателя 2103 – 1452 см. куб.
Мощность двигателя 2103 – 71 л.с. /5600 об.мин
Крутящий момент – 104 Нм/3400 об.мин
Топливо – АИ93
Расход топлива — город 9.4л. | трасса 6.9 л. | смешанн. 8,9л/100 км
Расход масла – 700 гр на 1000 км
Вес двигателя ваз 2103 — 121кг
Габаритные размеры двигателя 2103 (ДхШхВ), мм — 565х541х665
Масло для двигателя ваз 2103:
5W-30
5W-40
10W-40
15W-40
Сколько масла в двигателе 2103: 3.75 л.
При замене заливать около 3.5 л.
Ресурс двигателя ваз 2103:
1. По данным завода – 125 тыс.км
2. На практике – до 250 тыс.км
Тюнинг
Потенциал – 200 л.с.
Без потери ресурса – 80 л.с.
Двигатель устанавливался на:
ВАЗ 21023
ВАЗ 2103
ВАЗ 21043
ВАЗ 21053
ВАЗ 21061
ВАЗ 2107
Неисправности и ремонт двигателя ВАЗ 2103
Двигатель ВАЗ 2103 1,5 л. карбюраторный рядный 4-х цилиндровый с верхним расположением распределительного вала, грм двигателя 2103 имеет цепной привод. Блок двигателя ваз 2103 высокий, об этом ниже. Ресурс двигателя 2103, при бережной эксплуатации, своевременному обслуживанию превышает установленные заводом 125 тыс. км и достигает 180-200 тыс. км.
Основные отличия двигателя 2103 от 2101 увеличенная высота блока на 8,8 мм с 207,1 мм до 215,9 мм для возможности установки коленвала с увеличенным ходом поршня, благодаря которому объем двигателя возрос до 1,5л.
Как было замечено в предыдущих статьях, в движках жигулей есть проблема износа распредвала. Ввиду того, что цепной привод не имеет натяжителя – нужно подтягивать цепь, так же двигатель нуждается в постоянной(раз в 10 тыс.км) регулировке зазоров клапанов, об этом подскажет громкий стук в двигателе ваз 2103 при работе двигателя на холостом ходу слышный с места водителя при закрытом капоте. У многих возникает вопрос, зачем регулировать клапана, ответ прост — снизится мощность, возрастет расход топлива, прогорит клапан и много других радостей жизни. Регулировка клапанов двигателя ваз 2103 должна производиться либо мастером либо собственноручно. К другим проблемам, карбюраторы Вебер и Озон постоянно требуют регулировки СО и очистки. Часто бывает так, что греется двигатель ваз 2103, проблему ищите в помпе, 99% это она. Нередко когда на 2103 двигатель троит, здесь причин может быть масса, чаще прогар клапана, в любом случае надо мерять компрессию и показывать машину мастеру. Многие неисправности двигателя ваз 2103 повторяют проблемы 2101, в силу их близкого родства. Для более полной картины и чтобы ничего не упустить, почитайте про мотор 2101 тут.
Тем не менее, по народному мнению мотор 2103 наиболее надежный и неприхотливый среди классической линейки движков, а учитывая цены на запчасти на двигатель ваз 2103, то неприходится удивляться почему же классика до сих пор ездит по нашим с вами улицам.
Тюнинг двигателя ВАЗ 2103
Форсировать двигатель 2103
Методов доработки двигателя ВАЗ 2103, как и всей классики, масса, от расточки до компрессора с турбинами, но начнем попорядку. Как форсировать двигатель ваз 2103, самый дешевый и простой тюнинг двигателя ВАЗ 2103 была и остается расточка цилиндров на 3 мм под 79 мм поршень от ВАЗ 21011 или от ВАЗ 2106, на выходе имеем 1,6л. Точить дальше, под 82 мм не получится по причине слишком тонких стенок блока.
Для дальнейшего увеличения объема нужно увеличивать ход поршня до 84 мм. Увеличение объема таким способом снижает максимальные рабочие обороты, низовойдвигатель не лучший выбор для гонок, но все же. Для увеличения мощности двигателя ваз 2103 ходом поршня, ставят коленвал ВАЗ 2130, а так же используют поршня ТРТ, шатуны усаживаются до 134 мм. Минусы ТРТ поршней – меньшая их прочность по отношению к стандартным, тепловая нагрузка на кольцо и вероятность прогара поршня.
Расточка двигателя 2103
— поршень большего диаметра, стандартный ход
1,6 л. 79х80 ~75 л.с
Максимальный крутящий момент ~115Нм при 3000об/мин
С данной конфигурацией получаем в точности мотор 2106.
— поршень большего диаметра, стандартный ход
1,7 л. 79х84 ~ 80 л.с.
Моментный двигатель, не для гонок конфигурация.
Как форсировать двигатель ВАЗ 2103 путем доводки ГБЦ
На троечном моторе применяется ГБЦ ВАЗ 2101, основной недостаток которой состоит в том, что разрабатывалась она под малообъемные агрегаты. Соответственно проходные сечения каналов не соответствуют возросшему объему, это нужно исправлять путем расточки и полировки каналов.
Полировка и расточка каналов гбц ваз 2103 и коллектора существенно снизит сопротивление на впуске, мощность двигателя во всем диапазоне увеличивается на 10%. Как полировать и какие подбирать валы описано в статье «Тюнинг ВАЗ 2101», ввиду идентичности моторов, все это применимо к двигателю тройки жигулей. Доработка двигателя 2103 на этом не заканчивается, правильно подобранный распределительный вал на 2103, а так же доработанная голова способны показать более 100 л.с.
Распредвал на ВАЗ 2103
Правило выбора распревала простое, на низовом конфиге, когда большой ход поршня и он больше диаметра цилиндра, нужно брать вал низовой с фазой до 270, подъем клапана побольше. Такой двигатель получится довольно тяговитый, городской и ехать будет куда лучше стандарта, в то время высокие обороты пропадут. Какой распредвал выбрать для низов, подойдет Эстонец 1, нивовский вал 213 или нечто подобное по параметрам. При верховой конфигурации соответственно выбираем верховой вал широкофазный с большим подъемом клапанов. В стандартную голову без доработок встанет распредвал Мастермотор 48, ОКБ Двигатель 480 и им подобные. Более широкофазные потребуют доп работ. Минусы валов с широкой фазой это тяга на низах, чем злее вал тем хуже едет снизу и неравномерней холостой ход, но теряя низы приобретаем высокую мощность на верхах. В какую сторону двигаться и стоит ли двигаться вообще решать вам, основные и наиболее популярные принципы форсирования двигателя 2103 вам были представлены максимально просто и доступно.
Компрессор на классику
Компрессор на 2103 отличный вариант недорого надуть жигули, в магазинах лежат готовые установочные киты с давлением 0,5 и 0,7 бар от автотурбо. Установка компрессора 0.5бар на классику довольно такие простая и требует минимум доработок, в паре с доработанной ГБЦ мотор выдает более 125 л.с. Против данного метода выступает цена всех мероприятий.
Турбо классика
Это, без сомнения, самый дорогой и нерентабельный метод форсировки двигателя ваз 2103. Первым пунктом ваших затрат станет перевод мотора на инжектор. Затем приобретаем турбо кит на классику, цены от $1,5тыс. Большинство китов построены на основе турбины Garrett GT17, встают без доработки поршневой, но дуют до 0,5 бар. В данном случае компрессор на классику более рационален. В случае тотальной доработки двигателя 2103, с заменой поршневой, установкой правильного турбо вала (фаза 270-280, подъем максимальный), данный кит выдаст до 1,2 бар с мощностью более 140 л.с. Стоимость подобных переделок обойдется дороже самой машины, даже без учета ходовой, коробки, тормозной системы и прочего прочего 😀
РЕЙТИНГ ДВИГАТЕЛЯ: 2
<<НАЗАД