Работа поршня в цилиндре – Поршневой двигатель внутреннего сгорания — это… Что такое Поршневой двигатель внутреннего сгорания?
Как работает двигатель внутреннего сгорания
В данной статье мы расскажем об устройстве двигателя, его компонентах, о том, как они работают вместе, какие могут возникнуть неполадки и как увеличить производительность.
Содержание статьи
- Введение
- Внутреннее сгорание
- Устройство двигателя
- Неполадки двигателя
- Клапанный механизм и система зажигания двигателя
- Системы охлаждения, воздухозабора и запуска двигателя
- Читайте также » Системы смазки, подачи топлива, выхлопа и электросистема двигателя
- Увеличение мощности двигателя
- Часто задаваемые вопросы по двигателям
- Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
- Узнать больше
- Читайте также Статьи про все типы двигателей
Бензиновый автомобильный двигатель предназначен для преобразования энергии бензинового топлива для движения автомобиля. В настоящий момент самым простым способом привести автомобиль в движение является сгорание бензина в двигателе. В связи с тем, что двигатель автомобиля является двигателем внутреннего сгорания, сгорание топлива происходит внутри двигателя.
На заметку:
- Существуют различные типы двигателей внутреннего сгорания. Каждый из них имеет свои преимущества и недостатки.
- Также существуют и двигатели внешнего сгорания. Паровые двигатели в поездах старого образца и пароходах являются наглядным примером двигателей внешнего сгорания. В паровых двигателях топливо (уголь, дрова, масло и т.д.) сгорает вне двигателя для получения пара, который уже приводит двигатель в движение. Внутреннее сгорание является более эффективным (расход топлива на 1км значительно ниже) чем внешнее сгорание, помимо этого размеры двигателей внутреннего сгорания намного меньше двигателей внешнего сгорания. Именно поэтому нам не встречаются автомобили Ford или GM на паровых двигателях.
Внутреннее сгорание
Принцип работы любого поршневого двигателя внутреннего сгорания: Если поместить небольшой объем высокоэнергетического топлива (например, бензина) в небольшой закрытый сосуд и воспламенить, то в результате высвободится огромное количество энергии в виде расширяющегося газа. Этой энергии хватит для запуска картофелины на 1510м. В данном случае энергия используется для движения картофелины. Данную энергию можно использовать в более интересных целях. Например, если у Вас получится создать цикл, который позволит производить взрывы с частотой несколько сотен раз в минуту, и если Вам удастся эффективно использовать данную энергию, то Вы получите основную часть автомобильного двигателя!
Рисунок 1
На сегодняшний день практически во всех автомобилях используется так называемый четырехтактный цикл сгорания для преобразования энергии топлива в механическую энергию. Четырехтактный принцип работы также называют Цикл Отто, в честь Николауса Отто, который изобрел его в 1867г. Все четыре такта представлены на рисунке 1. Эти такты:
- Такт впуска
- Такт сжатия
- Рабочий такт
- Такт выпуска
На рисунке видно, что в картофельной пушке картофелина заменена устройством, которое называется поршень. При помощи шатуна поршень соединяется с коленчатым валом. При вращении коленвала создается эффект «перезарядки пушки». Во время цикла в двигателе происходят следующие процессы:
- Поршень начинает движение сверху, впускной клапан открывается, поршень движется вниз для наполнения цилиндра воздухом и бензином. Это такт впуска. На данном этапе для смеси топлива и воздуха требуется лишь небольшое количество бензина. (Часть 1 рисунка)
- Затем поршень движется вверх, сжимая топливно-воздушную смесь. Сжатие способствует более мощному взрыву. (Часть 2 рисунка)
- Как только поршень достигает верхней точки, срабатывает свеча зажигания, которая воспламеняет топливо. Происходит взрыв бензина, при этом поршень движется вниз. (Часть 3 рисунка)
- Как только поршень достигает нижней точки хода, открывается выпускной клапан для вывода продуктов сгорания по выхлопной трубе. (Часть 4 рисунка)
Теперь двигатель готов к началу следующего цикла, происходит впуск топлива и воздуха.
Обратите внимание, что движение, получаемое в результате работы двигателя внутреннего сгорания, является вращательным, в то время как движение, производимое картофельной пушкой — линейное (прямая линия). В двигателе линейное движение поршней переводится во вращательное движение при помощи коленвала. Вращательное движение идеально подходит для вращения колес автомобиля.
В следующем разделе мы предлагаем рассмотреть детали, которые обеспечивают работу двигателя, начиная с цилиндров.
Устройство двигателя
Цилиндр является самой важной частью двигателя, поршень совершает поступательные движения в цилиндре. Вышеописанный двигатель имеет один цилиндр. Такой двигатель типичен для газонокосилок, однако в автомобильные двигатели имеют более одного цилиндра (обычно четыре, шесть или восемь). В многоцилиндровых двигателях цилиндры расположены в одном из трех порядков: линейно, V-образно или оппозитно (т.н. двигатель с горизонтальными противолежащими цилиндрами или оппозитный двигатель).
Рисунок 2. Линейное расположение — Цилиндры расположены линейно в один ряд.
Рисунок 3. V-образное — Цилиндры расположены линейно в два ряда под углом друг к другу.
Рисунок 4. Оппозитное — Цилиндры расположены линейно в два ряда с противоположных сторон двигателя.
Говоря об управляемости, затратах на производство и характеристиках формы, необходимо отметить, что различные конфигурации имеют свои преимущества и недостатки. Благодаря этим преимуществам и недостаткам определенные типы двигателей подходят для определенных автомобилей.
Давайте более подробно рассмотрим основные детали двигателя.
Свеча зажигания
Свеча зажигания подает искру для воспламенения топливно-воздушной смеси, что обеспечивает процесс сгорания. Для правильной работы двигателя искра должна подаваться в строго определенный момент.
Клапаны
Впускной и выпускной клапаны открываются в определенный момент для впуска топлива и воздуха и выпуска выхлопа. Обратите внимание, что оба клапана закрыты во время тактов сжатия и сгорания для обеспечения герметичности камеры сгорания.
Поршень
Поршень — это металлическая деталь цилиндрической формы, которая движется вверх и вниз внутри цилиндра.
Поршневые кольца
Поршневые кольца обеспечивают скользящее уплотнение между внешней кромкой поршня и внутренней кромкой цилиндра. Кольца используются для двух целей:
- Они препятствуют попаданию топливно-воздушной смеси в картер из камеры сгорания в процессе такта сжатия и рабочего такта.
- Они препятствуют попаданию масла из картера в камеру сгорания, где оно может сгореть.
Большинство автомобилей, которые «жгут масло» и требуют его добавления каждые 1000 км, имеют старые двигатели, поршневые кольца которых уже не могут обеспечивать надлежащее уплотнение.
Шатун
Шатун соединяет поршень и коленвал. Он может вращаться с обеих сторон для изменения угла во время движения поршня и вращения коленвала.
Коленвал
Коленвал преобразует поступательное движение поршней во вращательное как рычаг «чертика из табакерки».
Картер
Картер окружает коленвал. В нем находится некоторое количество масла, которое собирается в нижней части картера (поддоне картера).
Далее мы узнаем о неполадках двигателя.
Неполадки двигателя
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
- У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
- У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
- Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
- Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
- Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
- Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
- В цилиндре имеются повреждения.
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
Регулярное техническое обслуживание может помочь избежать ремонта
Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
- При износе свечи зажигания или ее провода может наблюдаться слабая искра.
- При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
- Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
Могут возникнуть и другие неполадки. Например:
- Если аккумулятор разряжен, Вы также не сможете завести двигатель.
- Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
- Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
- Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
- Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
- В исправно работающем двигателе все эти факторы находятся в допустимых пределах.
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.
Клапанный механизм и система зажигания двигателя
Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.
Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.
Рисунок 5. Распредвал
В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана. Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».
Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».
Рисунок 6. Система зажигания
В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.
Системы охлаждения, воздухозабора и запуска двигателя
В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».
На схеме представлено соединение патрубков системы охлаждения
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.
Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:
- Любое собственное трение, вызванное поршневыми кольцами
- Давление сжатия любого из цилиндров во время такта сжатия
- Энергию, необходимую для открытия и закрытия клапанов распредвалом
- А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.
В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).
Системы смазки, подачи топлива, выхлопа и электросистема двигателя
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.
- При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
- В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).
Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.
Выхлопная система автомобиля Porsche 911
Теперь, когда Вы уже кое-что знаете о том, что заливается в автомобиль, давайте рассмотрим, что же из него выходит. Выхлопная система состоит из выхлопной трубы и глушителя. Если глушитель не установлен, то Вы сможете услышать звуки тысяч небольших взрывов, доносящихся из выхлопной трубы. Глушитель заглушает эти звуки. Выхлопная система также включает в себя и каталитический дожигатель выхлопных газов. Для получения более подробной информации читайте статью «Как работает каталитический дожигатель выхлопных газов».
В большинстве современных автомобилей система понижения токсичности выхлопа состоит из каталитического дожигателя выхлопных газов, и набора датчиков и приводов и компьютера, который отслеживает и регулирует происходящие процессы. Например, каталитический дожигатель использует катализатор и кислород для сжигания неотработанного топлива и некоторых других химических веществ, содержащихся в выхлопе. Датчик кислорода отвечает за количество кислорода в выхлопе, достаточное для работы катализатора, при необходимости датчик производит дополнительную регулировку.
Что еще помимо бензина питает Ваш автомобиль? Электросистема состоит из аккумулятора и генератора. Генератор соединяется с двигателем при помощи ремня и генерирует ток для зарядки аккумулятора. Аккумулятор подает 12 вольт на все системы, которым требуется электропитание (система зажигания, радио, фары, стеклоочистители, электрические стеклоподъёмники и сиденья с электрическим приводом регулировки, компьютеры и т.д.).
Теперь, когда Вы все узнали про подсистемы двигателя, мы расскажем о том, как увеличить мощность двигателя.
Увеличение мощности двигателя
Прочитав данную статью, Вы увидите, что существует множество способов увеличения показателей Вашего двигателя. Производители автомобилей постоянно экспериментируют со следующими параметрами для увеличения мощности двигателя или снижения расхода топлива.
Увеличение рабочего объема — Большой рабочий объем способствует увеличению мощности, т.к. при каждом обороте двигателя сгорает больше топлива. Увеличить рабочий объем можно, установив большие или дополнительные цилиндры. Практика показывает, что не имеет смысла устанавливать более 12 цилиндров.
Увеличение степени сжатия — Увеличение степени сжатия способствует увеличению мощности. Однако, чем сильнее происходит сжатие топливно-воздушной смеси, тем выше вероятность ее самовозгорания (еще до срабатывания свечи зажигания). Высокооктановый бензин предотвращает раннее сгорание топлива. Именно по этой причине мощные автомобили необходимо заправлять высокооктановым бензином — в их двигателях используется более высокая степень сжатия для увеличения мощности.
Увеличение объема подаваемой смеси — При увеличении подачи воздуха (и, соответственно, топлива), не изменяя размер цилиндра, можно увеличить мощность (точно также, как при увеличении размера цилиндра). Турбокомпрессоры и компрессоры наддува повышают давление поступающего воздуха, благодаря чему в цилиндр можно подать больше воздуха. Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
Охлаждение поступающего воздуха — При сжатии воздуха, его температура повышается. Поэтому лучше обеспечивать подачу более холодного воздуха в цилиндр, т.к. чем выше температура воздуха, тем меньше его расширение при сгорании. По этой причине во многих двигателях с наддувом и турбонаддувом используются охладители воздуха. Охладитель воздуха — это специальный радиатор, по которому сжатый воздух проходит для охлаждения перед подачей в цилиндр. Для получения более подробной информации читайте статью «Как работает система охлаждения».
Облегчение подачи воздуха — При движении поршня вниз во время такта впуска, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух впускных клапанов на каждый цилиндр. В некоторых современных автомобилях используются полированные впускные коллекторы для снижения сопротивления воздуха. Установка больших воздушных фильтров также может улучшить подачу воздуха.
Облегчение выпуска выхлопа — При выпуске выхлопа из цилиндра, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух выпускных клапанов на каждый цилиндр (автомобиль с двумя впускными и двумя выпускными клапанами имеет по четыре клапана на каждый цилиндр, что увеличивает мощность двигателя — когда Вы слышите рекламу автомобиля, в которой говорится, что у него 4 цилиндра и 16 клапанов, это означает, что в двигателе установлено по четыре клапана на каждый цилиндр). Если выхлопная труба слишком узкая или сопротивление воздуха в глушителе слишком высокое, то это может создать противодавление, что также снизит мощность. В высокоэффективных выхлопных системах используются выпускные коллекторы, широкие выхлопные трубы и глушители для предотвращения образования противодавления в выхлопной системе. Поэтому, когда Вы слышите, что в автомобиле установлена «раздельная система выпуска», это значит, что для улучшения выпуска отработанных газов используется две выхлопных трубы вместо одной.
Снижение массы — Чем легче детали, тем эффективнее работает двигатель. Каждый раз, когда поршень меняет направления движения, он затрачивает энергию на то, чтобы прекратить движение в одну сторону и начать в другую. Чем легче поршень, тем меньше энергии ему требуется.
Впрыск топлива — Система впрыска топлива обеспечивает очень точное дозирование топлива для каждого цилиндра. Благодаря этому увеличивается мощность и снижается расход топлива. Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
Часто задаваемые вопросы по двигателям
Ниже приведены наиболее часто задаваемые вопросы наших читателей, а также ответы на них:
- Чем отличаются бензиновые и дизельные двигатели? В дизельных двигателях отсутствует свеча зажигания. Дизельное топливо подается в цилиндр, возгорание происходит под действием тепла и давления во время такта сжатия. Энергетическая плотность дизеля значительно выше, чем у бензина, поэтому дизельный двигатель рассчитан на больший пробег. Для получения более подробной информации читайте статью «Как работает дизельный двигатель».
- Чем отличаются двухтактные и четырехтактные двигатели? В большинстве бензопил и лодочных моторов используются двухтактные двигатели. В двухтактном двигателе отсутствуют клапаны, а свеча зажигания дает искру каждый раз, когда поршень находится в верхней точке хода. Через отверстие в нижней части стенки цилиндра происходит впуск топлива и воздуха. Когда поршень движется вверх, сжимая смесь, свеча зажигания дает искру для начала процесса сгорания, отработанные газы выходят через другое отверстие в стенке цилиндра. В двухтактных двигателях необходимо смешивать масло с бензином, т.к. отверстия в стенках цилиндров не допускают использование уплотнительных колец для герметизации камеры сгорания. В общем, двухтактные двигатели являются достаточно мощными для своих размеров, т.к. в них на один поворот двигателя происходит в два раза больше циклов сгорания. Однако, двухтактный двигатель расходует больше бензина и сжигает большое количество масла, соответственно, он наносит больший вред экологии. Для получения более подробной информации читайте статью «Как работает двухтактный двигатель».
- В этой статье Вы упоминали паровые двигатели — существуют ли какие-либо преимущества паровых двигателей или других двигателей внешнего сгорания? Единственное преимущество паровых двигателей заключается в том, что в качестве топлива можно использовать все, что горит. Например, в паровом двигателе в качестве топлива можно использовать уголь, газеты, дрова, в то время как для работы двигателя внутреннего сгорания требуется очищенное высококачественное жидкое или газообразное топливо. Для получения более подробной информации читайте статью «Как работает паровой двигатель».
- Используются ли в автомобильных двигателях какие-либо другие циклы помимо цикла Отто? Как говорилось ранее, в двухтактных и дизельных двигателях используются другие циклы работы. В двигателе автомобиля Mazda Millenia используется модифицированный цикл Отто, который называется цикл Миллера. В газотурбинных двигателях используется цикл Брайтона. В дизельных ротационных двигателях Ванкеля используется цикл Отто, однако он происходит совершенно по-другому в отличие от четырехтактных поршневых двигателей.
- Зачем нужно устанавливать восемь цилиндров? Почему нельзя установить один большой цилиндр с таким же рабочим объемом, как у восьми цилиндров? По ряду причин в 4.0л двигателе используется восемь цилиндров объемом пол-литра каждый, а не один большой 4-литровый цилиндр. Основная причина — это равномерность работы. V-образный восьмицилиндровый двигатель работает более равномерно, т.к. в нем происходит восемь взрывов с равными интервалами вместо одного сильного взрыва. Другая причина — это начальный крутящий момент. Когда Вы заводите V-образный восьмицилиндровый двигатель, Вам необходимы только два цилиндра (1л) во время их тактов сжатия, если использовать один большой цилиндр, то придется производить сжатие 4 литров.
Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
Количество цилиндров в двигателе играет важную роль в его мощности. Каждый цилиндр имеет поршень, который движется внутри него, эти поршни соединены с коленвалом и вращают его. Чем больше используется поршней, тем больше происходит сгораний топлива в определенный момент времени. Это означает, что за меньшее время может быть выработано больше мощности.
4-цилиндровые двигатели обычно имеют «прямое» или «линейное» расположение цилиндров, в то время как в 6-цилиндровых двигателях используется более компактное V-образное расположение, поэтому они и называются V-образные 6-цилиндровые двигатели. Американские производители автомобилей остановили свой выбор на V-образных 6-цилиндровых двигателях, т.к. являются более мощными и тихими, оставаясь при этом достаточно легкими и компактными для установки в автомобили.
4-цилиндровый двигатель с линейным расположением цилиндров автомобиля Lotus Elise
Исторически сложилось так, что американские автовладельцы отвернулись от 4-цилиндровых двигателей, считая их медленными, слабыми, работающими неравномерно и дающими слабое ускорение. Однако, когда такие японские производители автомобилей, как Honda и Toyota стали устанавливать мощные 4-цилиндровые двигатели в 1980-х и 90-х, американцы по достоинству оценили эти компактные двигатели. Даже, несмотря на то, что такие японские автомобили, как Toyota Camry имели огромный успех по сравнению с аналогичными моделями американских производителей, в США продолжался выпуск автомобилей с 6-цилиндровыми двигателями, т.к. считалось, что американцам необходимы мощные автомобили. На сегодняшний день, в связи с ростом цен на бензин и обострившейся экологической ситуацией, Детройт переходит на 4-цилиндровые двигатели благодаря их низкому расходу топлива и меньшим выбросам в атмосферу.
3,8л V-образный 6-цилиндровый двигатель с турбонаддувом автомобиля Nissan GT-R.
Что касается будущего 6-цилиндровых двигателей, то за последние годы были максимально устранены различия между 4-цилиндровыми и 6-цилиндровыми двигателями. Для того, чтобы соответствовать требованиям низкого расхода бензина и уровня выхлопных газов, производители приложили много усилий по улучшению работы 6-цилиндровых двигателей. Большинство современных автомобилей с 6-цилиндровыми двигателями соответствуют стандартам расхода топлива уровня выхлопов, установленных для компактных 4-цилиндровых двигателей. Таким образом, различия в эффективности и мощности этих двух типов двигателей ослабевают, и принятие решения о покупке 4-цилиндрового или 6-цилиндрового двигателя сводится к их стоимости. Что касается моделей автомобильных, доступных с обоими типами двигателей, конфигурация с 4-цилиндровым двигателем стоит дешевле до $1000 по сравнению с 6-цилиндровым. Таким образом, независимо от мощности автомобиля, 4-цилиндровый двигатель поможет Вам сэкономить.
И, напоследок: Не стоит пытаться установить 6-цилиндровый двигатель на автомобиль, в котором изначально стоял 4-цилиндровый. Переоборудование автомобиля с 4-цилиндровым двигателем для установки 6-цилиндрового может обойтись Вам дороже, чем покупка нового автомобиля.
Источник: http://www.howstuffworks.com/
Устройство и принцип работы двигателя внутреннего сгорания (18
Для того, чтобы понять принцип работы двигателя, нужно иметь некоторые представления о самом двигателе и его строении. Давайте разберемся со всем более подробно:
Смотрите также: Вся правда о полном приводе
В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.
Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.
Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.
Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.
Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт — такт впуска
Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.
Второй такт — такт сжатия
Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.
Третий такт — рабочий ход
Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.
Четвертый такт — такт выпуска
Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.
После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.
Газораспределительный механизм
Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.
Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.
Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.
Принцип работы ГРМ
Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.
Кривошипно-шатунный механизм
Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.
Устройство КШМ
Поршень
Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.
Шатун
Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.
Коленчатый вал
Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в получении усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.
Маховик
Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.
Блок и головка цилиндров
Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.
В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.
Источник: autoustroistvo.ru
что нужно знать об этих деталях и как продлить срок их службы?
В статье подробно рассмотрены ключевые детали автомобильного двигателя – поршень и цилиндр. Уделено внимание их конструкции, функциям, условиям работы, возможным проблемам при эксплуатации и путям их решения.
Цилиндр и поршень – ключевые детали любого ДВС. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.
Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.
Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.
Принцип работы цилиндро-поршневой группы
Современные двигатели внутреннего сгорания оснащены блоками, в которые входят от 1 до 16 цилиндров – чем их больше, тем мощнее ДВС.
Внутренняя часть каждого цилиндра – гильза – является его рабочей поверхностью. Внешняя – рубашка – составляет единое целое с корпусом блока. Рубашка имеет множество каналов, по которым циркулирует охлаждающая жидкость.
Внутри цилиндра находится поршень. В результате давления газов, выделяющихся в процессе сгорания топливно-воздушной смеси, он совершает возвратно-поступательное движения и передает усилия на шатун. Кроме того, поршень выполняет функцию герметизации камеры сгорания и отводит от нее излишки тепла.
Поршень включает следующие конструктивные элементы:
- Головку (днище)
- Поршневые кольца (компрессионные и маслосъемные)
- Направляющую часть (юбку)
Бензиновые двигатели оснащены достаточно простыми в изготовлении поршнями с плоской головкой. Некоторые модели имеют канавки, способствующие максимальному открытию клапанов. Поршни дизельных ДВС отличаются наличием на днищах выемок – благодаря им воздух, поступающий в цилиндр, лучше перемешивается с топливом.
Кольца, установленные в специальные канавки на поршне, обеспечивают плотность и герметичность его соединения с цилиндром. В двигателях разного типа и предназначения количество и расположение колец могут отличаться.
Чаще всего поршень содержит два компрессионных и одно маслосъемное кольцо.
Компрессионные (уплотняющие) кольца могут иметь трапециевидную, бочкообразную или коническую форму. Они служат для минимизации попадания газов в картер двигателя, а также отведения тепла от головки поршня к стенкам цилиндра.
Верхнее компрессионное кольцо, которое изнашивается быстрее всех, обычно обработано методом пористого хромирования или напылением молибдена. Благодаря этому оно лучше удерживает смазочный материал и меньше повреждается. Остальные уплотняющие кольца для лучшей приработки к цилиндрам покрывают слоем олова.
С помощью маслосъемного кольца поршень, совершающий возвратно-поступательные движения в гильзе, собирает с ее стенок излишки масла, которые не должны попасть в камеру сгорания. Через дренажные отверстия поршень «забирает» масло внутрь, а затем отводит его в картер двигателя.
Направляющая часть поршня (юбка) обычно имеет конусную или бочкообразную форму – это позволяет компенсировать неравномерное расширение поршня при высоких рабочих температурах. На юбке расположено отверстие двумя выступами (бобышками) – в нем крепится поршневой палец, служащий для соединения поршня с шатуном.
Палец представляет собой деталь трубчатой формы, которая может либо закрепляться в бобышках поршня или головке шатуна, либо свободно вращаться и в бобышках, и в головке (плавающие пальцы).
Поршень с коленчатым валом соединяется шатуном. Его верхняя головка движется возвратно-поступательно, нижняя вращается вместе с шатунной шейкой коленвала, а стержень совершает сложные колебательные движения. Шатун в процессе работы подвергается высоким нагрузкам – сжатию, изгибу и растяжению – поэтому его производят из прочных, жестких, но в то же время легких (в целях уменьшения сил инерции) материалов.
Конструкционные материалы деталей ЦПГ
Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.
В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.
Современные автомобили, особенно с дизельными ДВС, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.
Из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем) производятся сегодня поршневые кольца – части ЦПГ, которые наиболее подвержены износу и деформациям.
Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.
Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.
В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.
Одним из самых эффективных антифрикционных покрытий поршней является MODENGY Для деталей ДВС.
Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.
MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.
На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.
MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.
Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС
.
Методы охлаждения и смазывания цилиндро-поршневой группы
В каждом цикле работы двигателя при температуре, достигающей +2000 °С, сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.
Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.
При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.
Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.
Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.
Неисправности ЦПГ и их диагностика
Даже грамотная эксплуатация автомобиля не гарантирует, что со временем не возникнет проблем с его цилиндро-поршневой группой.
О неисправностях деталей ЦПГ свидетельствует увеличение расхода масла, ухудшение пусковых качеств двигателя, снижение его мощности, появление каких-либо посторонних шумов при работе. Эти моменты нельзя игнорировать, так как стоимость ремонта цилиндро-поршневой группы иногда равна стоимости автомобиля в целом.
Под влиянием очень высоких нагрузок и температур:
- На рабочих поверхностях цилиндров появляются трещины, сколы, пробоины
- Посадочные места под гильзу деформируются
- Днища поршней оплавляются и прогорают
- Поршневые кольца разрушаются, закоксовываются, залегают
- На теле поршней возникают различные деформации
- Зазоры между поршнем и цилиндром сужаются, вследствие чего на юбках появляются задиры
- Наблюдается общий износ цилиндров и поршней
Перечисленные неисправности цилиндро-поршневой группы неизбежны при перегреве двигателя. Он может возникнуть из-за нарушения герметичности системы охлаждения, отказа термостата или помпы, сбоев в работе вентилятора охлаждения радиатора, поломки самого радиатора или его датчика.
Точно определить состояние цилиндров и поршней можно с помощью специализированной диагностики самой ЦПГ (при полной разборке двигателя) или других автомобильных систем (например, воздушного фильтра).
В ходе сервисных работ измеряется компрессия в цилиндрах ДВС, берутся пробы картерного масла и пр. – все это помогает оценить исправность работы цилиндро-поршневой группы.
Ремонт цилиндро-поршневой группы двигателя включает замену маслосъемных и компрессионных колец, установку новых поршней, шатунов, восстановление (расточку) цилиндров.
Степень износа последних определяется с помощью индикаторного нутрометра. Трещины и сколы на стенках устраняются эпоксидными пастами или путем сварки.
Новые поршни – с нужным диаметром и массой – подбирают к гильзам, а поршневые пальцы – к поршням и втулкам верхних головок шатунов. Шатуны предварительно проверяют и при необходимости восстанавливают.
Как продлить ресурс ЦПГ?
Ресурс цилиндро-поршневой группы зависит от типа двигателя, режима его эксплуатации, регулярности обслуживания и многих других факторов. Срок службы ЦПГ отечественных автомобилей, как правило, меньше, чем у иномарок: около 200 тыс. км против 500 тыс.
Для того, чтобы детали ЦПГ вырабатывала свой ресурс полностью, рекомендуется:
- Использовать моторное масло, рекомендованное автопроизводителем
- Осуществлять замену масла и охлаждающей жидкости строго по регламенту
- Следить за температурным режимом работы двигателя, не допуская его перегрева и холодного запуска
- Регулярно проводить диагностику автомобиля
- Применять для обслуживания автокомпонентов специальные средства, которые могут защитить их от усиленного износа и максимально продлить срок службы
Поршень двигателя (назначение, устройство, принцип работы)
В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.
Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.
- При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
- После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.
Что такое поршень двигателя внутреннего сгорания автомобиля?
Содержание статьи
Устройство детали включает в себя три составляющие:
- Днище.
- Уплотняющая часть.
- Юбка.
Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.
Днище
Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.
Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.
В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.
В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.
В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.
Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.
Уплотняющая часть
Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.
Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.
Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.
В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.
Вместе с днищем уплотнительная часть формирует головку поршня.
Вас также заинтересует:
Юбка
Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.
Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.
Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.
Типы поршней
В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.
Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.
В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.
Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.
Материалы изготовления
В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.
Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).
Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.
Но и у элементов составного типа есть недостатки, среди которых:
- возможность использования только в дизельных двигателях;
- больший вес по сравнению с литыми алюминиевыми;
- необходимость использования поршневых колец из жаростойких материалов;
- более высокая цена;
Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.
Видео: Принцип работы поршня двигателя. Устройство
Четырёхтактный двигатель — Википедия
Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и большой мощности.
Работа четырёхтактного двигателя в разрезе. Цифрами обозначены тактыРабочий цикл четырёхтактного двигателя происходит за четыре такта, каждый из которых составляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:
- Впуск. Длится от 0 до 180° поворота кривошипа. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается свежий заряд. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
- Такт сжатия. 180—360° поворота кривошипа. Поршень движется к ВМТ, при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается бо́льшая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении (такого как двигатель Ленуара), за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет увеличить КПД двигателя. В двигателях Отто любой конструкции сжимается горючая смесь, в дизелях — чистый воздух.
В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.
- Рабочий ход 360—540° кривошипа — движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу. В двигателе Отто при этом происходит процесс изохорного расширения, в дизеле за счёт продолжающегося горения рабочей смеси подвод теплоты продолжается столько, сколько длится впрыск порции топлива. Поэтому сгорание в дизеле обеспечивает процесс, близкий к адиабатному, расширение происходит при одинаковом давлении.
- Выпуск. 540—720° поворота кривошипа — очистка цилиндра от отработавшей смеси. Выпускной клапан открыт, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы.
В реальных двигателях фазы газораспределения подбираются таким образом, чтобы учитывалась инерция газовых потоков и геометрия трактов впуска и выпуска. Как правило, начало впуска опережает ВМТ от 15 до 25°, конец впуска отстает примерно на столько же от НМТ, так как инерция потока газов обеспечивает лучшее заполнение цилиндра. Выхлопной клапан опережает НМТ рабочего хода на 40 — 60°, при этом давление сгоревших газов к НМТ падает и противодавление на поршень при выхлопе оказывается ниже, что повышает КПД. Закрытие выхлопного клапана также относится за ВМТ впуска для более полного удаления выхлопных газов.
Так как процесс горения и распространение фронта пламени в двигателях Отто требуют определенного времени, зависящего от режима работы двигателя, а максимальное давление из соображений геометрии кривошипно-шатунного механизма желательно иметь от 40 до 45° от ВМТ начала рабочего хода, зажигание осуществляется с опережением — от 2 — 8° на холостом ходу до 25 — 30° на режимах полной нагрузки.
Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.
Главные особенности четырёхтактного двигателя[править | править код]
- Газообмен в цилиндре практически полностью обеспечивается перемещением рабочего поршня;
- Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм;
- Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала;
- Привод систем газораспределения, зажигания и впрыска топлива должен вращаться с частотой вдвое меньшей, чем частота вращения коленчатого вала двигателя. Для этого могут применяться как шестерёнчатые редукторы, так цепная или ременная передача.
Цикл Отто[править | править код]
Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V): такт впуска(A) , представляющий собой изобарическое расширение; за ним следует такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующимитакт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка
Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.
Первым человеком, построившим первый практически используемый четырёхтактный двигатель, был немецкий инженер Николаус Отто. Поэтому четырёхтактный цикл известен как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, называется двигателем Отто.
Идеальный цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В практическом четырёхтактном цикле Отто имеются также изобарическое сжатие (выхлоп) и изобарическое расширение (впуск), которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли ни в сообщении рабочему газу теплоты, ни в совершении газом работы.
Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)Атрибутивный агрегат четырёхтактного двигателя, управляет газообменом при смене тактов, обеспечивая поочередное подключение полости цилиндра к впускному и выхлопному коллекторам.
Управление газораспределением может осуществляться:
- МЕХАНИЧЕСКИ:
- — распределительным кулачковым валом или валами с клапанами;
- — цилиндрическими гильзовыми золотниками, движущимися возвратно-поступательно либо вращающимися в головке цилиндров;
- МИКРОПРОЦЕССОРОМ. В этом случае привод клапанов осуществляется непосредственно мощными быстродействующими электромагнитами (БМВ) или с использованием гидропривода (ФИАТ).
В первом случае клапанами управляет распределительный вал, вращающийся вдвое медленнее коленчатого вала. Распределительный вал имеет несколько кулачков, каждый из которых управляет одним впускным или выхлопным клапаном. От распредвалов часто приводятся дополнительные сервисные устройства двигателя — масляные, топливные насосы, распределитель зажигания, ТНВД, иногда — механические нагнетатели и др.
В разных двигателях используются один или несколько распределительных валов, расположенных возле коленвала, над рядом цилиндров или даже над каждым рядом клапанов. Привод распредвалов осуществляется от коленвала либо распределительными шестернями, либо пластинчато-роликовой цепью, либо зубчатым ремнем. В некоторых старых конструкциях использовались валики с коническими шестернями (В-2). В любом случае валы синхронизированы с частотами вращения 1 : 2.
В любом случае вал, расположенный рядом с коленчатым, называется нижним, в головке над или рядом с клапанами — верхним. Клапаны по расположению относительно камеры сгорания также могут быть верхними — расположенными над донышком поршня, или нижними — расположены рядом с цилиндрами сбоку. Нижние клапаны приводятся от нижнего вала через короткие стаканообразные толкатели. Привод верхних клапанов от нижнего вала осуществляется, как правило, штанговым механизмом, от верхнего либо через рокеры (коромысла), либо через стаканообразные толкатели. Во многих двигателях используются гидравлические толкатели, автоматически выбирающие зазоры в клапанных парах и делающие механизм газораспределения необслуживаемым.
Клапан представляет собой стержень с тарелкой, выполненной из жаростойких материалов. Стержень клапана совершает возвратно-поступательные движения в направляющей втулке, тарелка коническим герметизирующим пояском ложится на клапанное седло, также выполняемое из жаростойких материалов. И седло, и направляющая втулка являются контактными поверхностями, через которые осуществляется охлаждение клапана. Особено важно это положение для выхлопных клапанов, которые постоянно работают в потоках горячих газов (а при неправильной установке зажигания или момента впрыска — в потоке пламени) и нуждаются в интенсивном теплоотводе. Поэтому для улучшения охлаждения внутри стержня клапана может располагаться полость с теплопроводным материалом — с натрием, с медью. А сами контактирующие поверхности должны быть гладкими и иметь минимально возможные зазоры. Многие клапаны имеют механизмы поворота, обеспечивающие принудительное вращение вокруг продольной оси в процессе работы.
Открытие клапана осуществляет соответствующий кулачок, закрытие — либо возвратна клапанная пружина/пружины, либо особый десмодромный механизм (Даймлер-Бенц), позволяющий из-за отсутствия пружин достичь очень высоких скоростей перемещения клапанов и, соответственно, существенно поднять обороты двигателя без существенного повышения усилий в механизме распределения. Дело в том, что чем слабее клапанная пружина, тем медленнее возврат клапана в седло. Уже при работе на относительно невысоких оборотах слабые пружины позволяют клапанам «зависать» и соприкасаться с поршнями (двигатели ВАЗ без внутреннего ряда клапанных пружин — на 5500-6000 об/мин). Чем сильнее клапанные пружины, тем большие напряжения испытывают детали ГРМ и тем более качественное масло должно использоваться для его смазки. Десмодромный механизм позволяет перемещать клапана с такой скоростью, которая ограничена только моментом их инерции, то есть, существенно более высокой, чем достижимые для клапанов скорости в реальных двигателях.
Электромагнитное или электрогидравлическое управление с микропроцессором, сверх этого, позволяет легко корректировать фазы газораспределения двигателя, добиваясь наивыгоднейшей характеристики распределения на каждом режиме.
Некоторые ранние модели двигателей («Харлей-Дэвидсон», «Пежо») имели впускные клапаны со слабыми пружинами, обеспечивавшими «автоматическое» открывание клапана после начала впуска под действием вакуума над поршнем.
Для коррекции фаз газораспределения в ГРМ с распредвалами используются разного рода дифференцирующие механизмы, их конструкция зависит от компоновки двигателя и ГРМ (которая во многом определяет компоновку всего ДВС).
Работа ДВС сопровождается выделением значительного количества теплоты из-за высоких температур рабочих газов и существенных контактных напряжений в трущихся деталях. Поэтому для обеспечения работы двигателя детали, образующие пары трения, необходимо охлаждать и смазывать, а из зазоров между ними вымывать продукты механического износа. Смазывающее масло, помимо обеспечения масляного клина в зазорах, отводит значительное количество тепла от нагруженных трущихся поверхностей. Для охлаждения гильз цилиндров и элементов головки двигателя дополнительно используется система принудительного охлаждения, которая может быть жидкостной и воздушной.
Система смазки двигателя состоит из ёмкости с маслом, в таком качестве часто используется поддон картера — в системе с масляным картером или отдельный масляный бак — в системе с сухим картером. Из ёмкости масло засасывается масляным насосом, шестерёнчатым или, реже, коловратным, и по каналам поступает под давлением к пáрам трения. В системе с масляным картером гильзы цилиндров и некоторые второстепенные детали смазываются разбрызгиванием, системы с сухим картером предусматривают наличие специальных лубрикаторов, обеспечивающих смазку и охлаждение этих же деталей. В двигателях средней и большой мощности в систему смазки включаются элементы масляного охлаждения поршней в виде залитых в донышки змеевиков или специальных форсунок, обливающих днище поршня со стороны картера. Как правило, система смазки содержит один или несколько фильтров для очистки масла от продуктов износа пар трения и осмоления собственно масла. Фильтры используются либо с картонной шторкой с определённой степенью пористости, либо центробежные. Для охлаждения масла часто применяют воздушно-масляные радиаторы или водомасляные теплообменники.
Система воздушного охлаждения в простейшем случае представлена просто массивным оребрением цилиндров и головок. Набегающий поток воздуха снаружи и масло изнутри охлаждает двигатель. Если обеспечить теплоотвод набегающим потоком невозможно, в систему включается вентилятор с воздуховодами. Наряду с таким неоспоримыми достоинствами, как простота двигателя и относительно высокая живучесть в неблагоприятных условиях, а также относительно меньшая масса, воздушное охлаждение имеет серьёзные недостатки:
— большое количество воздуха, продувающего двигатель, несёт большое количество пыли, которая оседает на оребрении, особенно при подтекании масла, неизбежном в эксплуатации, в результате эффективность охлаждения резко снижается;
— невысокая теплоёмкость воздуха заставляет продувать через двигатель существенные его объёмы, для чего требуется существенный отбор мощности для работы вентилятора охлаждения;
— форма деталей двигателя плохо соответствует условиям хорошего обтекания воздушным потоком, в связи с чем добиться равномерного охлаждения элементов двигателя очень трудно; из-за разницы рабочих температур в отдельных элементах конструкции возможны большие термические напряжения, что снижает долговечность конструкции.
Поэтому воздушное охлаждение применяется в ДВС нечасто и, как правило, либо на дешевых конструкциях, либо в тех случаях, когда работа двигателя протекает в особых условиях. Так, на транспортёре переднего края ЗАЗ-967 используется двигатель с воздушным охлаждением МеМЗ-968, отсутствие водяной рубашки, рукавов и радиатора охлаждения повышает живучесть транспортёра в условиях поля боя.
Жидкостное охлаждение имеет ряд преимуществ и применяется на ДВС в большинстве случаев. Преимущества:
— высокая теплоёмкость жидкости способствует быстрому и эффективному отводу тепла из зон теплообразования;
— гораздо более равномерное теплораспределение в элементах конструкции двигателя, что существенно снижает тепловые напряжения;
— использование жидкостного охлаждения позволяет быстро и эффективно регулировать поток тепла в системе охлаждения и, стало быть, быстрее и гораздо равномернее, чем в случае с воздушным охлаждением, прогревать двигатель до температур рабочего диапазона;
— жидкостное охлаждение позволяет увеличивать как линейные размеры деталей двигателя, так и его теплонапряжённость за счёт высокой эффективности теплоотведения; поэтому все средние и крупные двигатели имеют жидкостное охлаждение, за исключением ПДП-двухтактных двигателей, у которых зона продувочных окон гильз охлаждается продувочным воздухом из соображений компоновки;
— специальная форма водо-воздушного или водо-водяного теплообменника позволяет максимально эффективно передавать тепло двигателя в окружающую среду.
Недостатки водяного охлаждения:
— повышение веса и сложность конструкции двигателя из-за наличия водяной рубашки;
— наличие теплообменника/радиатора;
— снижение надёжности агрегата из-за наличия стыков рукавов, шлангов и патрубков с возможными течами жидкости;
— обязательное прекращение работы двигателя при потере хотя бы части охлаждающей жидкости.
Современные системы жидкостного охлаждения используют в качестве теплоносителя специальные антифризы, замерзающие при низких температурах и содержащие пакеты присадок разного назначения — ингибиторы коррозии, моющие, смазывающие, антипенные, а иногда и герметизирующие места возможных течей. С целью повышения КПД двигателя системы герметизируют, при этом повышая рабочий диапазон температур к области кипения воды. Такие системы охлаждения работают при давлении выше атмосферного, их элементы рассчитаны на поддержание повышенного давления. Этиленгликолевые антифризы имеют высокий коэффициент объёмного расширения. Поэтому в таких системах часто применяются отдельные расширительные бачки или радиаторы с увеличенными верхними бачками.
С целью стабилизации рабочей температуры и для ускорения прогрева двигателя в системы охлаждения устанавливают термостаты. Для воздушного охлаждения термостат — сильфон, заполненный церезином или этиловым спиртом в сочетании с обоймой и системой рычагов, поворачивающих заслонки, обеспечивающие переключение и распределение воздушных потоков. В системах жидкостного охлаждения точно такой же термоэлемент осуществляет открытие клапана или переключение системы клапанов, направляющих жидкость либо в радиатор, либо в специальный канал, обеспечивающий циркуляцию нагреваемой жидкости и равномерное прогревание двигателя.
Радиатор или теплообменник охлаждения имеет вентилятор, продувающий через него поток атмосферного воздуха, с гидростатическим или электрическим приводом.
Двигатели Отто имеют термический КПД около 40 %, что с механическими потерями дает фактический КПД от 25 до 33%.
Современные двигатели могут иметь уменьшенный КПД для удовлетворения высоких экологических требований.
КПД ДВС можно повысить с помощью современных систем процессорного управления топливоподачей, зажиганием и фазами газораспределения. Степень сжатия современных двигателей, как правило, имеет значения, близкие к предельным (спорный момент, см. Цикл Миллера).
Факторы, влияющие на мощность двигателя[править | править код]
Четырёхтактный цикл1=верхняя мёртвая точка
2=нижняя мёртвая точка
A: такт впуска
B: такт сжатия
C: такт рабочего хода
D: такт выпуска
Мощность поршневого двигателя зависит от объёма цилиндров, объёмным КПД, потерь энергии — газодинамических, тепловых и механических, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Мощность двигателя зависит также от пропускной способности тактов всасывания и выхлопа, а значит, от их проходных сечений, длины и конфигурации каналов, а также от диаметров клапанов, больше впускных. Это справедливо для любых поршневых двигателей. Максимальная мощность ДВС достигается при наивысшем наполнении цилиндров. Частота вращения коленвала в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На высоких оборотах двигателя могут происходить физические повреждения поршневых колец, механический контакт клапанов с поршнями, что приводит к разрушению двигателя. Поршневые кольца вертикально колеблются в канавках поршней. Эти колебания ухудшают уплотнение между поршнем и гильзой, что приводит к потере компрессии, падении мощности и КПД в целом. Если коленвал вращается слишком быстро, клапанные пружины не успевают достаточно быстро закрывать клапана. Это может привести к контакту поршней с клапанами и вызывать серьёзные повреждения, поэтому на скоростных спортивных двигателях используют привод клапанов без возвратных пружин. Так, «Даймлер-Бенц» серийно выпускает моторы с десмодромным управлением клапанами (с двойными кулачками, один открывает клапан, другой прижимает его к седлу), БМВ использует электромагнитное управление клапанами. На высоких скоростях ухудшаются условия работы смазки во всех парах трения.
Совокупно с потерями на преодоление инерции возвратно-поступательно движущихся элементов ЦПГ, это ограничивает среднюю скорость поршней большинства серийных двигателей 10 м/с.
Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.
Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.
При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.
- Рикардо Г.Р. Быстроходные двигатели внутреннего сгорания. — М.: ГНТИ Машиностроительной литературы, 1960.
Двигатель внутреннего сгорания: устройство и принцип работы
Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.
Определение и общие особенности работы ДВС
Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.
Классификация двигателей внутреннего сгорания
В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
- инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
- дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
- Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
- Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.
Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.
Устройство двигателя внутреннего сгорания
Корпус двигателя объединяет в единый организм:
- блок цилиндров, внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
- кривошипно-шатунный механизм, который передаёт энергию движения на коленчатый вал;
- газораспределительный механизм, который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
- система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси;
- система удаления продуктов горения (выхлопных газов).
Четырёхтактный двигатель внутреннего сгорания в разрезе
При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.
Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.
Определимся в терминологии. Такт — это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл — это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.
Принципы работы ДВС
— Принцип работы двухтактного двигателя
Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.
В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.
В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.
При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.
В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.
Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.
— Принцип работы четырёхтактного двигателя
Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.
Процесс работы двигателя внутреннего сгорания
Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:
- Такт первый, впуск. Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура — от 80 до 120 градусов Цельсия.
- Такт второй, сжатие. При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2—1,7 Мпа, а температуры — до 300-400 градусов Цельсия.
- Такт третий, расширение. Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
- Такт четвёртый, выпуск. Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры — 600-900 градусов по Цельсию.
Вспомогательные системы двигателя внутреннего сгорания
— Система зажигания
Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:
- Источник питания. Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы — генератор.
- Включатель, или замок зажигания. Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
- Накопитель энергии. Катушка, или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
- Распределитель зажигания (трамблёр). Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.
Система зажигания ДВС
— Впускная система
Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:
- Воздухозаборник. Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
- Воздушный фильтр. Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
- Дроссельная заслонка. Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике — при помощи электроники.
- Впускной коллектор. Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.
— Топливная система
Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:
- Топливный бак — ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
- Топливопроводы — комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
- Устройство смесеобразования, то есть карбюратор или инжектор — специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
- Электронный блок управления (ЭБУ) смесеобразованием и впрыском — в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
- Топливный насос — электрическое устройство для нагнетания бензина или солярки в топливопровод.
- Топливный фильтр — расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.
Схема топливной системы ДВС
— Система смазки
Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии. Система смазки ДВС включает в себя:
- Поддон картера — резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
- Масляный насос — качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
- Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
- Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.
— Выхлопная система
Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):
- Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
- Приёмная труба — изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
- Резонатор, или, говоря народным языком, «банка» глушителя — ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
- Катализатор — устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
- Глушитель — ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.
Выхлопная система ДВС
— Система охлаждения
Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.
- Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
- Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
- Водяной насос (помпа) — «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
- Термостат — специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор — при прогретом двигателе.
Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.
В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.
Поршневой двигатель
- Статья опубликована 26.06.2014 06:16
- Последняя правка произведена 16.11.2015 18:28
Определение.
Поршневой двигатель – один из вариантов двигателя внутреннего сгорания, работающий за счет превращения внутренней энергии сгорающего топлива в механическую работу поступательного движения поршня. Поршень приходит в движение при расширении рабочего тела в цилиндре.
Кривошипно-шатунный механизм преобразует поступательное движение поршня во вращательное движение коленчатого вала.
Рабочий цикл двигателя состоит из последовательности тактов односторонних поступательных ходов поршня. Подразделяют двигатели с двумя и четырьмя тактами работы.
Принцип работы двухтактного и четырехтактного поршневых двигателей.
4-х тактный цикл работы поршневого ДВС: 1. Всасывание горючей смеси. |
2-х тактный цикл работы поршневого ДВС: 1. Поршень движется вверх и происходит сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем. 2. Поршень опускается обратно — рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую полость цилиндра. |
Количество цилиндров в поршневых двигателях может варьироваться в зависимости от конструкции (от 1-го до 24-х). Объем двигателя принято считать равным сумме объемов всех цилиндров, вместимость которых находят по произведению поперечного сечения на ход поршня.
В поршневых двигателях различных конструкций по-разному происходит процесс воспламенения топлива:
• Электроискровым разрядом, который образуется на свечах зажигания. Такие двигатели могут работать как на бензине, так и на других видах топлива (природный газ).
Сжатием рабочего тела:
• В дизельных двигателях, работающих на дизельном топливе или газе (с 5% добавлением дизтоплива), сжимается воздух, и при достижении поршнем точки максимального сжатия, происходит впрыск топлива, которое воспламеняется от контакта с нагретым воздухом.
• Двигатели компрессионной модели. Подача топлива в них точно такая же, как и в бензиновых двигателях. Поэтому, для их работы, необходимы особенный состав топлива (с примесями воздуха и диэтилового эфира), а также точная регулировка степени сжатия. Компрессорные двигатели нашли свое распространение в авиастроении и автомобилестроении.
• Калильные двигатели. Принцип их действия во многом схож с двигателями компрессионной модели, однако не обошлось без конструкционной особенности. Роль зажигания в них выполняет – калильная свеча, накал которой поддерживается энергией сгорающего на предыдущем такте топлива. Состав топлива также особенный, за основу берут метанол, нитрометан и касторовое масло. Применяются такие двигатели, как на автомобилях, так и на самолетах.
• Калоризаторные двигатели. В этих двигателях воспламенение происходит при контакте топлива с горячими частями двигателя (обычно – днище поршня). В качестве топлива применяется мартеновский газ. Используются они в качестве приводных двигателей на прокатных станах.
Виды топлива, применяющиеся в поршневых двигателях:
• Жидкое топливо – дизтопливо, бензин, спирты, биодизель;
• Газы – природные и биологические газы, сжиженные газы, водород, газообразные продукты крекинга нефти;
• Вырабатываемый в газогенераторе из угля, торфа и древесины, монооксид углерода также используется в качестве топлива.
Работа поршневых двигателей.
Циклы работы двигателей подробно расписаны в технической термодинамике. Различные циклограммы описываются различными термодинамическими циклами: Отто, Дизеля, Аткинсона или Миллера и Тринклера.
Причины поломок поршневых двигателей.
Существует множество причин поломок двигателей. Например, если вы стали замечать вибрации двигателя или повышенный расход топлива, то очень вероятно что необходимо отремонтировать насос-форсунки, с этим вопросом вам помогут здесь — http://www.spbparts.ru/remont/remont_nasos_forsunki/1.htm.
КПД поршневого ДВС.
Максимальный КПД который удалось получить на поршневом двигателе составляет 60%, т.е. чуть меньше половины сгорающего топлива расходуется на нагрев деталей двигателя, а также выходит с теплом выхлопных газов. В связи с чем, приходится оснащать двигатели системами охлаждения.
Классификация систем охлаждения:
• Воздушные СО – отдают тепло воздуху за счет ребристой внешней поверхности цилиндров. Применяются ли
бо на слабых двигателях (десятки л.с.), либо на мощных авиационных двигателях, которые охлаждаются быстрым потоком воздуха.
• Жидкостные СО – в качестве охладителя используется жидкость (вода, антифриз или масло), которая прокачивается через рубашку охлаждения (каналы в стенках блока цилиндров) и поступает в радиатор охлаждения, в котором она охлаждается воздушными потоками, естественными или от вентиляторов. Редко, но в качестве теплоносителя также используется металлический натрий, который расплавляется от тепла прогревающегося двигателя.
Применение.
Поршневые двигатели, благодаря своему мощностному диапазону, (1 ватт – 75 000 кВт) обрели большую популярность не только в автомобилестроении, но и авиастроении и судостроении. Они также используются для привода боевой, сельскохозяйственной и строительной техники, электрогенераторов, водяных насосов, бензопил и прочих машин, как мобильных так и стационарных.