Мотор тестер что такое: 403 — Доступ запрещён – 403 — Доступ запрещён

Информация

Диагностика современного автомобильного двигателя подразумевает комплексное исследование его работы. Для ее проведения используются три основных типа диагностических приборов.

  1. Для контроля работы электронной системы управления двигателем (ЭСУД) применяется сканер. Он «общается» с электронным блоком управления (ЭБУ) двигателя. Другими словами, отображаемые сканером параметры отнюдь не являются истинными, это то, что «видит» при своей работе ЭБУ.
  2. Четырехкомпонентный газоанализатор. Используется для извлечения диагностической информации из состава выхлопных газов.
  3.  Для непосредственного измерения параметров различных узлов двигателя, системы зажигания и элементов ЭСУД используется мотортестер. Иначе говоря, при помощи мотортестера диагност производит реальные измерения тех или иных параметров работы мотора. К ним можно отнести напряжения, токи, а также осциллограммы различных электрических сигналов, в том числе системы зажигания. Кроме того, можно оценить баланс цилиндров, состояние механической части и многое другое.

Следует отметить, что в отличие от сканеров, привязанных к той или иной ЭСУД, мотортестер одинаково успешно применяется на любых двигателях, начиная от карбюраторных и кончая новейшими, с непосредственным впрыском топлива и электронным управлением. Фактически мотортестер представляет собой мощный универсальный измерительный инструмент, научившись пользоваться которым, можно работать с любыми двигателями и даже с электронными устройствами.

Прообразы нынешних мотортестеров появились довольно давно. В основном они представляли собой комплексы электроизмерительных приборов для измерения тока, напряжения, угла замкнутого состояния контактов, оборотов двигателя и т.п. В их состав мог входить и осциллограф, позволяющий наблюдать быстротекущие электрические процессы, например, в системе зажигания. К сожалению, с помощью такого комплекса было невозможно оценить состояние механических узлов двигателя.

Бурное развитие микроэлектроники и компьютерной техники произвели революцию в мире мотортестеров. Современный мотортестер представляет собой ни что иное, как приспособленный для работы с автомобильным двигателем многоканальный цифровой осциллограф, как на базе персонального компьютера, так и портативный.

Смысл работы осциллографа очень простой: он отображает изменение амплитуды (уровня) сигнала во времени. Основным компонентом любого цифрового осциллографа является аналого-цифровой преобразователь (АЦП). Напряжение с датчиков или щупов поступает на вход АЦП, преобразуется в цифровой код, запоминается и выводится на экран в виде картинки (осциллограммы). Этот процесс происходит с очень большой частотой, поэтому любой кратковременный всплеск будет замечен и запомнен. К сожалению, человеческий глаз не всегда способен уловить очень короткие всплески сигнала, и в этом случае цифровой осциллограф просто незаменим, потому что он запоминает все изменения сигнала. В дальнейшем, после получения осциллограммы, диагност может спокойно ее рассмотреть и проанализировать.

Здесь нужно обратить внимание на один очень важный момент. Размер экрана ограничен, поэтому одна картинка будет сменяться другой по мере заполнения экрана. Частота смены картинок называется частотой развертки. Если эта частота не будет совпадать с частотой сигнала, то изображение на экране осциллографа будет «плыть». И картинка станет стабильной только тогда, когда частота развёртки будет кратна частоте исследуемого сигнала. Отсюда возникает важное понятие – синхронизация.
Итак, синхронизация – это привязка частоты развертки к частоте исследуемого сигнала с целью получения стабильного изображения на экране. В осциллографах синхронизация осуществляется двумя способами. Во-первых, осциллографы имеют встроенную схему синхронизации, использующую исследуемый сигнал и осуществляющую привязку непосредственно к нему. Во-вторых, сигнал синхронизации можно подать извне. Для этого существует специальный вход, и такая синхронизация называется внешней.

Поясним сказанное на простом примере. Допустим, нам необходимо снять мотортестером осциллограмму высокого напряжения. Но ведь двигатель работает, и частота его вращения постоянно меняется. Следовательно, нам необходимо взять в качестве привязки к оборотам двигателя какой-либо сигнал, по «команде» которого будет двигаться наш виртуальный электронный луч на экране компьютера. Забегая вперед, скажу, что чаще всего в качестве такого сигнала используется импульс высокого напряжения первого цилиндра.

Осознание роли синхронизации очень важно, потому что в мотортестерах она используется точно так же, как и в осциллографах. Более того, мотортестер в отличие от осциллографа дает несравненно большие возможности для синхронизации, выбор ее типа – очень важный и творческий момент, и мы поговорим об этом отдельно.

Рисуя осциллограммы на экране, мотортестер предоставляет диагносту возможность увидеть изменение напряжения, тока или давления во времени. Зная работу системы управления двигателем, диагност может определить, в каком состоянии находится система. В отличие от сканера, мотортестер позволяет диагностировать силовые узлы (высоковольтные цепи зажигания), механические дефекты системы газораспределения, и получить реальные данные, которые выдают датчики автомобиля.

Подводя итог, ответим на поставленный в заголовке вопрос. Мотортестер – один из трех основных типов автодиагностических приборов, представляющий собой многоканальный цифровой осциллограф и позволяющий производить непосредственные измерения тех или иных параметров двигателя.

С чего начать диагностику: сканер, мотор-тестер или газоанализатор?

На дворе 21 век, век электроники и компьютерных технологий. Диагностика автомобиля, основанная на органах чувств сегодня уже неактуальна. Какое оборудование стоит выбрать для современной диагностики автомобиля?

Необходимо знать, что из всех типов приборов для диагностики можно выделить три основные группы. Это диагностические сканеры, мотор-тестеры и газоанализаторы. Начнем по порядку.

Сканеры

Диагностические сканеры — это устройства, считывающие показания датчиков и сообщения об ошибках, возникающих в электронном блоке управления автомобиля. Для работы с автомобилем сканер подключается к автомобильному диагностическому разъему и считывает информацию, выдаваемую ЭБУ. Сканеры также делятся на два типа — портативные (со встроенным дисплеем) и выполненные в виде отдельного модуля, который подключается к персональному компьютеру или ноутбуку. Оба типа имеют свои преимущества и недостатки.

Любой сканер позволяет нам:

  • Считывать и расшифровывать коды неисправностей, записанных в памяти автомобиля.
  • Просматривать идентификационные данные систем.
  • Просматривать сигналы с датчиков.
Не стоит забывать, что сканер не является измерительным прибором. Он отображает только те значения, которые видит электронный блок управления.

Мотор-тестеры

Мотор-тестер является измерительным прибором. Принципы работы двигателей в разных марках машин практически одинаковые, благодаря этому мотор-тестеры можно использовать на любых автомобилях. Как и сканеры, мотор-тестеры могут быть выполнены в виде отдельных приборов, либо в виде модуля, подключаемого к компьютеру.

В отличие от сканера, устройство считывает данные не с ЭБУ, а напрямую с датчиков и двигателя. Тестеры позволяют снимать напряжения и токи датчиков и исполнительных механизмов, осциллограммы высокого напряжения, осциллограммы давления в цилиндрах, давление топлива, возможность померить стартерный ток и многое другое.

Мотор-тестером можно проверить обрывы или межвитковые замыкания форсунок. Можно измерить стартерный ток и сделать выводы об аккумуляторе и стартере. С помощью осциллограмм напряжения генератора можно сделать вывод о его состоянии.

Газоанализаторы

Газоанализатор — прибор, который измеряет состав выхлопных газов транспортного средства, благодаря чему можно сделать выводы о работе двигателя. Опытный диагност может сузить круг поиска неисправности с помощью анализа выхлопа.

Выводы

Все три типа приборов имеют разный принцип работы, дают нам разную информацию и ни в коем случае не подменяют друг друга. Для профессиональной диагностики неисправностей транспортного средства рекомендуем иметь на вооружении все три типа диагностического оборудования. Понравилась статья? Сохраните себе!

Что такое мотортестер?

Диагностика современного автомобильного двигателя подразумевает комплексное исследование его работы. Для ее проведения используются три основных типа диагностических приборов.

  1. Для контроля работы электронной системы управления двигателем (ЭСУД) применяется сканер. Он «общается» с электронным блоком управления (ЭБУ) двигателя. Другими словами, отображаемые сканером параметры отнюдь не являются истинными, это то, что «видит» при своей работе ЭБУ.
  2. Четырехкомпонентный газоанализатор. Используется для извлечения диагностической информации из состава выхлопных газов.
  3.  Для непосредственного измерения параметров различных узлов двигателя, системы зажигания и элементов ЭСУД используется мотортестер. Иначе говоря, при помощи мотортестера диагност производит реальные измерения тех или иных параметров работы мотора. К ним можно отнести напряжения, токи, а также осциллограммы различных электрических сигналов, в том числе системы зажигания. Кроме того, можно оценить баланс цилиндров, состояние механической части и многое другое.

Следует отметить, что в отличие от сканеров, привязанных к той или иной ЭСУД, мотортестер одинаково успешно применяется на любых двигателях, начиная от карбюраторных и кончая новейшими, с непосредственным впрыском топлива и электронным управлением. Фактически мотортестер представляет собой мощный универсальный измерительный инструмент, научившись пользоваться которым, можно работать с любыми двигателями и даже с электронными устройствами.

Прообразы нынешних мотортестеров появились довольно давно. В основном они представляли собой комплексы электроизмерительных приборов для измерения тока, напряжения, угла замкнутого состояния контактов, оборотов двигателя и т.п. В их состав мог входить и осциллограф, позволяющий наблюдать быстротекущие электрические процессы, например, в системе зажигания. К сожалению, с помощью такого комплекса было невозможно оценить состояние механических узлов двигателя.

Бурное развитие микроэлектроники и компьютерной техники произвели революцию в мире мотортестеров. Современный мотортестер представляет собой ни что иное, как приспособленный для работы с автомобильным двигателем многоканальный цифровой осциллограф, как на базе персонального компьютера, так и портативный.

Смысл работы осциллографа очень простой: он отображает изменение амплитуды (уровня) сигнала во времени. Основным компонентом любого цифрового осциллографа является аналого-цифровой преобразователь (АЦП). Напряжение с датчиков или щупов поступает на вход АЦП, преобразуется в цифровой код, запоминается и выводится на экран в виде картинки (осциллограммы). Этот процесс происходит с очень большой частотой, поэтому любой кратковременный всплеск будет замечен и запомнен. К сожалению, человеческий глаз не всегда способен уловить очень короткие всплески сигнала, и в этом случае цифровой осциллограф просто незаменим, потому что он запоминает все изменения сигнала. В дальнейшем, после получения осциллограммы, диагност может спокойно ее рассмотреть и проанализировать.

Здесь нужно обратить внимание на один очень важный момент. Размер экрана ограничен, поэтому одна картинка будет сменяться другой по мере заполнения экрана. Частота смены картинок называется частотой развертки. Если эта частота не будет совпадать с частотой сигнала, то изображение на экране осциллографа будет «плыть». И картинка станет стабильной только тогда, когда частота развёртки будет кратна частоте исследуемого сигнала. Отсюда возникает важное понятие – синхронизация.
Итак, синхронизация – это привязка частоты развертки к частоте исследуемого сигнала с целью получения стабильного изображения на экране. В осциллографах синхронизация осуществляется двумя способами. Во-первых, осциллографы имеют встроенную схему синхронизации, использующую исследуемый сигнал и осуществляющую привязку непосредственно к нему. Во-вторых, сигнал синхронизации можно подать извне. Для этого существует специальный вход, и такая синхронизация называется внешней.

Поясним сказанное на простом примере. Допустим, нам необходимо снять мотортестером осциллограмму высокого напряжения. Но ведь двигатель работает, и частота его вращения постоянно меняется. Следовательно, нам необходимо взять в качестве привязки к оборотам двигателя какой-либо сигнал, по «команде» которого будет двигаться наш виртуальный электронный луч на экране компьютера. Забегая вперед, скажу, что чаще всего в качестве такого сигнала используется импульс высокого напряжения первого цилиндра.

Осознание роли синхронизации очень важно, потому что в мотортестерах она используется точно так же, как и в осциллографах. Более того, мотортестер в отличие от осциллографа дает несравненно большие возможности для синхронизации, выбор ее типа – очень важный и творческий момент, и мы поговорим об этом отдельно.

Рисуя осциллограммы на экране, мотортестер предоставляет диагносту возможность увидеть изменение напряжения, тока или давления во времени. Зная работу системы управления двигателем, диагност может определить, в каком состоянии находится система. В отличие от сканера, мотортестер позволяет диагностировать силовые узлы (высоковольтные цепи зажигания), механические дефекты системы газораспределения, и получить реальные данные, которые выдают датчики автомобиля.

Подводя итог, ответим на поставленный в заголовке вопрос. Мотортестер – один из трех основных типов автодиагностических приборов, представляющий собой многоканальный цифровой осциллограф и позволяющий производить непосредственные измерения тех или иных параметров двигателя.

Применение мотортестера «MotoDoc II» в диагностике отечественных автомобилей ⋆ CHIPTUNER.RU

Применение мотортестера «MotoDoc II»
в диагностике отечественных автомобилей

©А. Пахомов 2007 (aka IS_18, Ижевск)

Внимание! Статья содержит большое количество графических файлов.


Этот материал адресован, прежде всего, начинающим диагностам, постигающим премудрости работы с мотортестером. Почему речь пойдет об автомобилях отечественного производства? На это есть две причины. Во-первых, эти машины более доступны основной массе ремонтников и хорошо изучены ими, а во-вторых, учиться на относительно редкой и дорогой иномарке – не самый лучший вариант. Я преследую цель не просто показать, как произвести то или иное измерение, а внушить мысль, что мотортестер – не что иное, как универсальный измерительный инструмент. Поняв на примере отечественных машин принципы его работы, можно использовать его при диагностике любых автомобилей.

Предполагается, что фирменную инструкцию к прибору Вы уже прочли. Прежде, чем начать разговор о методиках работы с прибором, позволю себе небольшое отступление. А именно для того, чтобы поговорить о весьма важном, на мой взгляд, аспекте работы – выборе типа синхронизации. 

Что такое синхронизация? 

Предположим, мы выбрали для измерений какой-либо канал. Для того чтобы «картинка» на экране монитора была стабильной, необходимо, чтобы частота развертки поля осциллограмм была кратна частоте сигнала. А для этого программе нужен какой-либо импульс привязки. Способов привязки, то есть синхронизации, в мотортестере MotoDoc II несколько. Рассмотрим их по порядку.

1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.

2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса – тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика. 
Два рассмотренных типа синхронизации я бы условно отнес к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.

3. Внутренняя синхронизация. При использовании этого типа никаких синхроимпульсов извне не поступает. Программа просто «рисует» в поле осциллограмм сигналы выбранных каналов. При этом кадры осциллограммы записываются в ОЗУ компьютера, и их возможное количество ограничено свободным объемом оперативной памяти. Так как время доступа к ОЗУ относительно мало, то в этом режиме программа позволяет записывать быстро изменяющиеся сигналы.

4. Самописец. Данный тип синхронизации аналогичен предыдущему, с той лишь разницей, что кадры записываются на жесткий диск компьютера. Время доступа к жесткому диску намного больше, чем к ОЗУ, вследствие чего достоверно фиксируются только медленно протекающие процессы. Зато количество записанных кадров ограничено только объемом жесткого диска и практически неисчерпаемо. Например, можно записывать интересующий нас сигнал несколько часов, что очень удобно при поиске «плавающего» дефекта.
Эти два типа я для простоты понимания называю «магнитофон». На самом деле, при включении внутренней синхронизации или самописца мотортестер работает как старый добрый магнитофон: просто записывает то, что нас интересует, а потом дает «послушать». 
«Симбиоз» первой и второй групп дают нам следующий тип синхронизации.

5. Автоматическая синхронизация. При выборе этого типа программа сочетает в себе внешнюю и внутреннюю синхронизацию. Когда поступает сигнал с датчика первого цилиндра, привязка осуществляется по нему. Если же сигнал отсутствует, то включается «магнитофон» – внутренняя синхронизация. Это бывает удобно в том случае, если, например, дефектные высоковольтные провода не позволяют нормально синхронизироваться по искре первого цилиндра.
Следующие три типа образуют последнюю группу, которую я бы условно назвал «синхронизация по каналу». 

6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распредвала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку, как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).

7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60–2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок. 

8. И еще один тип синхронизации по каналу – ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра. Строго говоря, этот максимум и ВМТ не совпадают, но расхождение не существенно при решении задач диагностики.

К выбору типа синхронизации нужно подходить с долей творчества. Следует также уяснить, что тот сигнал, который мы хотим посмотреть, одновременно может служить и сигналом синхронизации. Возвращаясь к примеру с датчиком положения распредвала. Мы можем наблюдать осциллограмму сигнала датчика, используя этот же сигнал как источник синхронизации. Обратите внимание на то, что при синхронизации по каналу необходимо, чтобы этот к

Для чего нужен осциллограф мотор-тестер

Для чего нужен осциллограф мотор-тестер

В данной статье рассмотрено:
Принцип работы системы впрыска топлива
Назначение автомобильного сканера и назначение мотор-тестера.
Пример измерения напряжения сканером и мотор-тестером одновременно, показаны преимущества и недостатки каждого способа.
Совет!
С данной статьей также можно ознакомиться в формате видео-урока.

Определяющую роль в современном автомобильном двигателе играют электронные системы управления и регулирования. Постепенно, шаг за шагом они вытеснили механические системы, так как лишь электроника делает возможным соблюдение все более строгих предписаний законодательства по выбросам вредных веществ с отработавшими газами.


На рисунке схематически изображен двигатель с простейшей системой впрыска топлива, которая состоит из следующих исполнительных механизмов:
1. топливная форсунка;
2. свеча и катушка зажигания;
а также из датчиков, которые определяют режим работы двигателя:
1. датчик массового расхода воздуха;
2. датчик положения дроссельной заслонки;
3. датчик абсолютного давления во впускном коллекторе;
4. датчик положения коленчатого вала;
5. датчик температуры;
6. лямбда-зонд.

Каждый датчик формирует определенный сигнал, который соответствует контролируемой им физической величине. Например, датчик расхода воздуха преобразует текущий расход воздуха через двигатель в определенный уровень напряжения, датчик положения дроссельной заслонки контролирует текущий угол открытия заслонки и выдает соответствующее напряжение. Лямбда-зонд выдает сигнал, который несет информацию о содержании кислорода в отработавших газах. Датчик положения коленвала генерирует сигнал, по которому можно определить текущее положение коленчатого вала и скорость его вращения.

Все эти сигналы поступают в электронный блок управления двигателем, на основании чего рассчитывается масса топлива, соответствующая необходимому наполнению цилиндров воздухом, и по этим данным определяется требуемая продолжительность и момент впрыска топлива. Также на основании описанных параметров система определяет угол поворота коленчатого вала, при котором должно происходить воспламенение рабочей смеси.

Если уровень сигнала от какого-либо датчика выходит за допустимый диапазон, система сохраняет соответствующий код неисправности и формирует сигнал водителю – включает лампу “Check Engine” на приборном щитке.

Как правило, диагностика автомобиля с такой системой управления начинается с подключения специализированного авто сканера. Сканер подключается к шине обмена данными электронного блока управления через диагностический разъем автомобиля и позволяет считать ошибки, которые были зарегистрированы электронным блоком управления в процессе работы двигателя. А также позволяет посмотреть информацию, поступающую от датчиков в том виде, в котором их видит блок управления.

Во многих случаях по показаниям сканера однозначно определить причину неисправности практически невозможно, поэтому самой оптимальной методикой поиска будет непосредственный анализ сигналов, поступающих в электронный блок управления и управляющих сигналов от блока управления, и сравнение их с эталонами. Для этих целей используют мотор-тестер.

Мотор-тестер – это специальный многоканальный цифровой осциллограф, предназначенный для диагностики различных систем автомобиля, в том числе и двигателя. Как уже было сказано, диагностика заключается в исследовании амплитудных и временных параметров сигналов, поступающих в блок управления, а также измерение параметров, которые не контролируются датчиками системы впрыска при помощи датчиков из комплекта мотор-тестера.

Например, при помощи дополнительного датчика давления можно получить график изменения давление в цилиндре, по которому можно судить об исправности цилиндропоршневой группы, а также газораспределительного механизма; давление во впускном коллекторе, по которому можно сразу сравнить наполнение всех цилиндров топливовоздушной смесью; давление в выпускном коллекторе. А также напряжения и токи в различных электрических цепях автомобиля.

Все эти сигналы можно непосредственно анализировать при помощи автомобильного осциллографа мотор-тестера независимо от того, возможно ли их просмотреть при помощи сканера вообще.

Итак, обобщив все ранее сказанное, можно сделать вывод, что сканер подключается к электронному блоку управления через диагностическую шину и позволяет просмотреть данные, с которыми оперирует электронный блок при управлении работой двигателя.

Также можно посмотреть параметры рассчитанные блоком управления, например, время впрыска топлива или угол опережения зажигания, на основании которых блок управления генерирует сигналы управления исполнительными механизмами, соответственно, форсункой и катушкой зажигания.

При выходе какого-либо параметра за пределы диапазона, блок управления фиксирует ошибку, однако достоверно определить неисправность предполагаемого узла можно лишь непосредственно перепроверив мотор-тестером уровни сигнала на входе электронного блока либо на выходе датчиков. Или еще и проанализировав сигналы исполнительных механизмов. При необходимости, также можно подключить дополнительные датчики из комплекта мотор-тестера и получить осциллограммы необходимых параметров.

Как правило, мотор-тестер выполнен в виде приставки к персональному компьютеру, что позволяет использовать вычислительные ресурсы компьютера для анализа сигналов, а также выводить результаты анализа на монитор компьютера в удобной форме в виде графиков и диаграмм, и сохранять эталонные сигналы.

Следует отметить, что даже в случае измерения некоторых параметров сканером, непосредственное измерение этих же параметров мотор-тестером, позволяет получить дополнительную информацию. Причиной малой информативности сигнала полученного со сканера является, невысокая скорость обновления данных, как правило сканер позволяет делать замер параметра несколько раз в секунду, чего недостаточно для анализа быстроизменяющихся параметров. Мотор-тестер позволяет производить от ста тысяч измерений в секунду.

Приведем в качестве примера анализ напряжения бортовой сети при запуске двигателя и работе его на ХХ. Измерять напряжение буду одновременно при помощи мультимарочного сканера AutoCom и мотор-тестера MT Pro. В окне сканера в качестве отображаемых параметров выбираю Напряжение батареи и Скорость вращения двигателя.

Окно настройки подсказывает, что чем больше параметров будет выбрано для одновременного отображения, тем меньше будет скорость обновления каждого. Поэтому если необходимо отслеживать параметры, которые изменяются быстрее, чем обновляются показания на сканере, то для измерения этих параметров необходимо воспользоваться мотор-тестером.

Двигатель заглушен. Запускаем запись осциллограммы, Уровень напряжения – составляет почти 12,8 В, что соответствует нормально заряженному аккумулятору.

Теперь включаем запись в окне сканера. Выбираем режим отображения в виде графиков.

Первое, что бросается в глаза – отличия в показаниях постоянного напряжения. Причиной этого может быть то, что измерение напряжения осуществляется в разных точках: щуп мотор-тестера подключен непосредственно к клеммам аккумулятора, а электронный блок показывает напряжение, которое приходит на его вход. Так как разница в показаниях небольшая и никаких симптомов неисправности в работе автомобиля не проявляется, то можно не обращать на это внимания. Как уже отмечалось ранее, двигатель заглушен, тем не менее сканер показывает скорость вращения 25 об/мин. Возможно, эта особенность работы сканера на данном автомобиле. Также не будем обращать на это внимания.

Запускаем двигатель.

По графику оборотов видно небольшой участок стартерной прокрутки, запуск двигателя и стабилизацию холостого хода. На графике выше видно просаживание бортового напряжения до уровня примерно 10,5 В, затем плавное нарастание напряжения до нормального напряжения работы генератора 14,2…14,3 В.

Остановим запись и перейдем к окну мотор-тестера. Находим участок запуска двигателя.

Наблюдается явное сходство сигналов, но первое, что бросается в глаза – наличие ступенек на графике, полученном сканером. Размер этих ступенек как раз и определяется временем обновления параметра. Например, четко видно, что пик падения напряжения в момент включения стартера пропущен и на самом деле напряжение снижалось до 9 В. В определенных случаях по этому сигналу можно определить неисправность аккумуляторной батареи или стартера, а если анализировать сигнал при работающей системе зарядки аккумулятора, по пульсациям напряжения можно определить неисправность в генераторе.

Основным преимуществом сканера является простой доступ практически ко всем параметрам двигателя посредством подсоединения всего одного провода сканера к диагностическому разъему, в случае же с мотор-тестером, необходимо вручную подключать щуп в определенную точку проводки для просмотра требуемого параметра. С другой стороны, мотор-тестер позволяет проводить непосредственное измерение и обеспечивает верные показания не зависимо от исправности бортовой сети или электронного блока управления. А также позволяет проводить анализ параметров, которые сканером просто невозможно проконтролировать.

Мотор-тестер и сканер – два незаменимых прибора в диагностике современного двигателя, которые не заменяют друг друга, а дополняют возможности каждого.

Поэтому Для эффективной работы, необходимо рационально сочетать возможности этих двух приборов. И понимать в каких случаях, какой прибор необходимо использовать.

Автор: Евгений Куришко

Альтернативное руководство к мотор тестеру Мотодок-3

Оставшиеся четыре разъема служат для подключения измерительных кабелей и датчиков. Все они универсальные, но у каждого из них есть и своеобразная специализация. В частности, первый (зеленый) и второй (фиолетовый) разъемы, помимо измерения напряжений и токов, служат для измерения давления с помощью датчиков ±1Атм, ±16Атм, ±100Атм и ±200Атм. Третий (желтый) и четвертый (голубой) разъемы, опять-таки, помимо токов и напряжений, позволяют снять осциллограмму высокого напряжения в системе зажигания.

Несколько слов следует сказать о самих разъемах.  Это так называемые быстрые разъемы, подключение кабеля производится вслепую. Чтобы подсоединить кабель к прибору, поднесите его конец к разъему, слегка прижмите и поворачивайте против часовой стрелки. Когда кабель «провалится» в разъем, зафиксируйте его, немного повернув по часовой стрелке. Сначала такая процедура может показаться непривычной, но со временем вы сможете присоединять кабели одним движением, наощупь.

Перед началом работы подсоедините кабели синхронизации, связи с компьютером и питания, затем установите прибор под капотом при помощи кронштейна крепления. Подайте питание на прибор нажатием кнопки «Power» и запустите программу на компьютере.

Краткие выводы. Перед началом работы нужно установить программу и настроить сетевое подключение для связи с центральным блоком, а также (при отсутствии Wi-Fi) соединить прибор с компьютером при помощи сетевого кабеля. Центральный блок имеет шесть разъемов для подключения кабелей, два из которых служат для подачи питания и импульсов синхронизации, а четыре – универсальные. Первый и второй каналы прибора, помимо основных измерений, позволяют снять осциллограммы давления, третий и четвертый – осциллограммы высокого напряжения в системе DIS.

Интерфейс программы

Рассмотрим основные элементы интерфейса программы MotoDoc III. На экране монитора фактически отображается виртуальная модель многоканального осциллографа с характерными атрибутами: полем осциллограмм, кнопками включения/выключения каналов, выбора типа синхронизации и т.д.

Мотортестер, ваш помощник. Часть 4 —

Синхронизация в мотортестерах

Вспомним, что электронно-лучевой осциллограф имеет два типа синхронизации: внешнюю, когда в качестве опорных используются импульсы, подаваемые оператором извне, и внутреннюю, когда основой для синхронизации служит сам исследуемый сигнал.

Как осуществляется синхронизация в мотортестерах, к чему разумнее всего осуществить привязку?

Совершенно очевидно, что основные получаемые с помощью мотортестера сигналы – циклические, связанные с рабочими процессами в двигателе. Поэтому привязку нужно выполнить именно к этим циклам, попросту говоря, к вращению двигателя.

Сведем в систему все методы синхронизации мотортестера:

  1. Синхронизация по высоковольтному импульсу. Для ее осуществления на высоковольтный провод устанавливается специальный датчик в виде прищепки, и с его помощью мотортестер отслеживает моменты искрообразования. Датчик можно установить на провод как первого, так и любого другого цилиндра, интерпретируя полученные результаты соответствующим образом. Такой тип синхронизации присутствует в любом мотортестере и является основным вследствие удобства и быстроты применения.
  2. Разновидностью первого типа синхронизации является синхронизация по высоковольтному импульсу в системе DIS. Напомним, что в системе типа DIS в каждом цикле работы двигателя возникает два момента искрообразования: на такте сжатия (рабочая искра) и на такте выпуска (холостая искра). Этот тип синхронизации также будет обязательно присутствовать в любом мотортестере и отличается от первого лишь количеством синхроимпульсов за рабочий цикл.
  3. В том или ином виде, под тем или иным названием практически во всех мотортестерах присутствует тип синхронизации, который условно можно назвать «самописец» или «магнитофон». Никакие синхронизирующие импульсы не поступают, а исследуемые сигналы записываются, как на магнитофонную ленту. В дальнейшем их можно просматривать и анализировать. Данный тип синхронизации очень удобен при поиске спорадических дефектов. Например, двигатель сам собой глохнет, причем это может произойти один раз в два-три часа. Можно подключить каналы мотортестера к высоковольтным проводам, форсункам, проводам питания ЭБУ и бензонасоса и, запустив самописец, ждать проявления дефекта. После чего просмотреть осциллограмму и выяснить, что произошло в момент остановки двигателя.
  4. Синхронизация по каналу. Фактически это аналог рассмотренной выше внутренней синхронизации осциллографа. Сигнал какого-либо канала используется как синхронизирующий, привязка происходит по нему. Таким сигналом может служить, например, напряжение на форсунках, на датчике положения распределительного вала, на  датчике давления в цилиндре и т.п.
  5. В отдельную группу можно выделить синхронизацию по ДПКВ. Некоторые мотортестеры обладают способностью привязываться к сигналу ДПКВ аналогично тому, как это делает блок управления двигателем. В этом случае достаточно один из каналов мотортестера соединить с выходом ДПКВ и задать в настройках соответствующие параметры синхронизации.

Краткий итог

Синхронизация мотортестера выполняется аналогично осциллографу. Ее особенностью является тот факт, что привязка производится к рабочим циклам (частоте вращения) двигателя.  Самый распространенный тип синхронизации – по высоковольтному импульсу. Для поиска спорадических дефектов используется «самописец».

Параметры мотортестера. Выбор мотортестера

Назовем несколько основных параметров, которые характеризуют мотортестер как электронный диагностический прибор. Часть из них уже упоминалась выше.

Обращайте внимание на следующие параметры, выбирая мотортестер:

  1. Полоса пропускания. Основной параметр, характеризующий качество обработки сигнала.
  2. Частота дискретизации. Должна быть достаточно высокой для обеспечения качественной оцифровки аналогового сигнала.
  3. Количество каналов. Должно быть не менее четырех. Меньшее количество не позволяет выполнить ряд измерений. Наличие более чем 6-8 каналов не имеет смысла: при моторной диагностике не возникает задач, требующих исследования такого большого количества сигналов одновременно.
  4. Входной импеданс. Можно представить его как совокупность входного сопротивления Rвх и входной емкости Cвх. Когда щупы мотортестера подключаются к исследуемой цепи, они привносят дополнительное сопротивление и емкость и могут повлиять на работу цепи. Для исключения этого влияния входное сопротивление прибора должно быть достаточно большим (порядка 1МОм), а емкость – малой (порядка 10 пФ).

Приобретение мотортестера на первый взгляд может показаться сложным делом. Попытаемся дать некоторые рекомендации по выбору прибора.

Самое главное

Не следует гнаться за громкими именами иностранных производителей. Не будет преувеличением сказать, что выпускаемые в России приборы вполне соответствуют мировому уровню и даже превышают его.

Мотортестеры ведущих отечественных производителей по своей функциональности стоят на очень высоком уровне, зачастую их возможности намного превышают потребности мастеров-диагностов. Качество изготовления, уровень защиты от неверных действий оператора, уровень применяемых схемотехнических решений позволяют смело рекомендовать их к приобретению.

Некоторые возможности, вроде уникальных альтернативных методик диагностики, содержатся только в двух мотортестерах в мире: полноценно в выпускаемом на Украине USB Autoscope III и частично в производимом в Таганроге MotoDoc III.  Можно отметить продукцию компании AceLab из Ростова-на-Дону, мотортестер АвтоАсПрофи, и выпускаемый в Самаре прибор МТ-10. Одним словом, в данном сегменте рынка вполне достойное место занимает отечественное диагностическое оборудование.

Все материалы цикла «Мотортестер, ваш помощник»:

Мотортестер, ваш помощник. Часть 1

Мотортестер, ваш помощник. Часть 2

Мотортестер, ваш помощник. Часть 3

Мотортестер, ваш помощник. Часть 5

Мотортестер, ваш помощник. Часть 6

Мотортестер, ваш помощник. Часть 7

Мотортестер, ваш помощник. Часть 8

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *