Бензиновый двигатель с непосредственным впрыском топлива: устройство и особенности
Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.
По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.
Читайте в этой статье
Прямой впрыск топлива: устройство системы непосредственного впрыска
Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.
Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.
Система непосредственного впрыска: конструктивные особенности
Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:
- контур высокого давления;
- бензиновый ТНВД;
- регулятор давления;
- топливную рампу;
- датчик высокого давления;
- инжекторные форсунки;
Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.
РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.
Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.
Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.
Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу и распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.
Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.
Как работает система непосредственного впрыска топлива
Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.
Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.
- Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
- Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
- Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.
За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».
Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).
В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.
Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.
Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.
Что в итоге
Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.
Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.
Читайте также
Что такое непосредственный впрыск топлива бензин
Система непосредственного впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.
Такие двигатели более экономичны (до 20 % экономии [1] ), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива.
Содержание
Наименование [ править | править код ]
Аббревиатура GDI подразумевает систему непосредственного впрыска на двигателях Mitsubishi. Это произошло потому, что впервые система непосредственного впрыска была применена на двигателе GDI, устанавливаемом на автомобили компании Mitsubishi. [1] Это утверждение верно лишь частично. Так первый серийный двигатель с непосредственным впрыском был изготовлен Daimler-Benz DB 601Messerschmitt Bf.109E. Впервые непосредственный впрыск топлива на автомобиле Mercedes W196, на котором знаменитый Фанхио выиграл сезоны 54 и 55 года. Mitsubishi первыми применила электронно-управляемый непосредственный впрыск что позволило применить на некоторых режимах суперобедненную смесь.
Согласно SAE J1930, система непосредственного впрыска имеет наименование DFI, direct fuel injection (рус. «непосредственный впрыск топлива»). В то же время, производители двигателей часто дают системам непосредственного впрыска собственные торговые наименования, например:
Прямой впрыск топлива – хорошо или плохо?
Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?
Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.
Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.
Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.
В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.
Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:
Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:
Минусы
1. Очень сложная конструкция.
2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.
3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.
Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.
4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.
5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.
6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.
Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.
Плюсы
2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.
3. Немного более высокая мощность.
4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.
5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.
7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1
8. Процесс работы двигателя точнее контролируется при помощи компьютера.
Таким образом, если выполнять определенные правила, предписанные автопроизводителем, а именно заправляться на проверенных заправках качественным топливом и регулярно проводить техническое обслуживание топливной системы автомобиля, то ухудшения качеств мотора, а тем более поломок оборудования можно избежать. Специалисты также советуют проводить прочистку форсунок после каждых 50-60 тыс. км.
Схема двигателя Volkswagen FSI с непосредственным впрыском бензина
Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).
Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина
В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.
Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)
Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.
В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.
Работа форсунки Orbital
Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.
Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI
Главные плюсы и минусы двигателей с непосредственным впрыском топлива
Прямой впрыск топлива – хорошо или плохо?
Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?
Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.
Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.
Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.
В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.
Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:
Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:
Минусы
1. Очень сложная конструкция.
2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.
3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.
Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.
4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.
5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.
6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.
Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.
Смотрите также: Подробное объяснение принципа работы двигателя с переменным сжатием Infiniti
Плюсы
1. Экологичность.
2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.
3. Немного более высокая мощность.
4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.
5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.
6. Меньше детонация.
7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1
8. Процесс работы двигателя точнее контролируется при помощи компьютера.
Таким образом, если выполнять определенные правила, предписанные автопроизводителем, а именно заправляться на проверенных заправках качественным топливом и регулярно проводить техническое обслуживание топливной системы автомобиля, то ухудшения качеств мотора, а тем более поломок оборудования можно избежать. Специалисты также советуют проводить прочистку форсунок после каждых 50-60 тыс. км.
Как работает непосредственный (прямой) впрыск топлива и чем он лучше?
Если Вы читали статью о том, как работает двигатель, то знаете, что бензиновые двигатели работают, высасывая смесь бензина и воздуха в цилиндр, сжимая его поршнем, когда тот движется вверх, и поджигая его искрой от свечи зажигания; в результате взрыва происходит сильное увеличение давления в камере сгорания, что приводит к движению поршня вниз, производя энергию — в конечном счёте вращательную.
Традиционная (непрямая) система впрыска топлива предварительно смешивает бензин и воздух в камере в непосредственной близости от цилиндра — камера эта называется впускным коллектором. В системе непосредственного впрыска, однако, воздух и бензин не смешиваются предварительно. Воздух поступает в камеру сгорания через впускной коллектор, в то время как бензин впрыскивается непосредственно в цилиндр. Именно так работает непосредственный впрыск топлива и поэтому он так называется.
Топливо-воздушная смесь в камере сгорания, клапаны, форсунка прямого впрыска и свеча зажигания
Плюсы прямого впрыска топлива
В сочетании с ультраточным управлением с помощью компьютера прямой впрыск обеспечивает более точное управление дозировкой топлива (количество впрыскиваемого топлива) и воздуха. Расположение инжектора также способствует более оптимальному распылению, которое разрушает струю жидкого бензина на более мелкие капельки и превращая его, можно сказать, в пыль. В результате обеспечивается более полное сгорание бензина, что очень важно, когда для сгорания этого выделяется так мало времени на высоких оборотах. Проще говоря, при непосредственном впрыске топлива больше бензина сжигается, что приводит к большей мощности и уменьшению загрязнения в расчёте на каждую каплю бензина.
Минусы непосредственного впрыска топлива
Основными недостатками двигателей с прямым впрыском бензина являются сложность этой системы и, как следствие, её конечная стоимость. Системы прямого впрыска дороже производить, потому что их компоненты должны быть более прочными и точными — они обращаются с топливом при значительно более высоких давлениях, чем косвенные системы впрыска, и, кроме того, сами форсунки должны быть в состоянии выдержать высокую температуру сгорания и разрушительное давление в цилиндре.
Насколько лучше прямой впрыск, чем непрямой?
Для примера, General Motors для автомобилей Cadillac CTS производит два аналогичных двигателя с прямым и косвенным впрыскиванием — 3,6-литровый двигатель V6. Двигатель с непрямым впрыском производит 263 лошадиных силы, в то время как версия с непосредственным впрыском топлива развивает 304 лошадиные силы. Несмотря на увеличенную мощность, двигатель с непосредственным впрыском в то же время более экономичен — 18 миль на галлон против 17 миль на галлон бензина в условиях города и равный расход в условиях трассы. Ещё одно преимущество двигателей с непосредственным впрыском топлива — это то, что в силу особенности своей технологии они менее требовательны к октановому числу бензина.
Технология прямого впрыска далеко не новая — она известна ещё примерно с середины 20-го века. Однако, тогда всего несколько автопроизводителей приняли её для массового производства автомобилей. Тогда, из-за дороговизны производства и отсутствия должного ассистирования компьютера, механический карбюратор был доминирующим в системах подачи топлива — вплоть до 1980-х годов. Тем не менее, давние и непрекращающиеся циклические события, такие как резкий рост цен на топливо и ужесточения в законодательстве по экономии топлива и экологичности выбросов, привели многих автопроизводителей к началу разработки системы прямого впрыска топлива. Вы, скорее всего, будете видеть больше и больше автомобилей, использующих непосредственный впрыск топлива, в ближайшем будущем.
Более того, практически все дизельные двигатели используют прямой впрыск топлива. Впрочем, дизели используют немного другой процесс сжигания топлива: бензиновые двигатели сжимают смесь бензина и воздуха и поджигают его искрой, в то время как дизели сжимают воздух, и только затем распыляют топливо в камеру сгорания, которое воспламеняется от температуры сжатого воздуха и его давления.
Непосредственный впрыск.
Непосредственный впрыск GDI — революция на границе тысячелетий.
Уже более 100 лет на автомобили устанавливают бензиновый и дизельный ДВС. Мы давно к ним приспособились, и хорошо зная их достоинства и недостатки, применяем тот или иной по обстоятельствам.
Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит «покушать», причем недешево. Поэтому мы его чаще видим на легковых и небольших грузовых автомобилях.
Дизель и сам по себе стоит дороже, и дороже в обслуживании, не столь быстроходен, выдает меньшую мощность с литра рабочего объема, имеет повышенный уровень шума и хуже пускается. Зато, и это главное, потребляет куда меньше топлива, причем более дешевого. Понятно, что практически весь тяжелый и комерческий транспорт «ездит» на дизелях.
Но лишних денег не бывает, и покупатели легковых автомобилей, причем не только в Европе, все чаще задумываются о том, какой двигатель им предпочесть. И довольно часто выбирают дизель. Хотя еще лучше , если бы два в одном… И быстрый , и тихий, и с легким пуском, и чтобы топливо зимой не застывало, да и мощность повыше не помешает, но вот только бы «ел» поменьше.
Но чудес не бывает. Есть теория двигателей…
Простыми словами. Чтобы топливо сгорало, нужен воздух. Но надо смешать с воздухом столько топлива, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим, и оно, конечно же , давно известно. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14.7 : 1 то есть на 1 грамм бензина нужно 14.7 грамма воздуха. Смесь в которой воздуха больше, чем нужно, называют «бедной», а там, в которой воздуха меньше, чем нужно, называется «богатой». Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает» в трубу и растет выброс угарного газа.
Но воздух нужен не только для сгорания . Чем выше давление в цилиндре перед воспламенением смеси, тем больше отдача двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска; тем больше потом будет давление.
А теперь разберемся, почему дизель экономичнее.
Вспомним, как работает двигатель внутреннего сгорания. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем он сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и при этом еще и нагревается. В конце сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя. Для современного безнаддувного дизеля вполне нормальна степень сжатия 20, а у серийных бензиновых, даже самых «зажатых», едва достигает 11. А выше давление в цилиндре, выше и эффективность. Поднять выше степень сжатия в бензиновом моторе мешают такие явления как детонация и калильное зажигание.
Детонация — очень быстрое сгорание топлива в точках удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук, мы слышим , когда например, на «Жигулях» пытаемся резко разогнаться после заправки низкооктановым бензином.
Калильное зажигание — преждевременное, (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания (например от того же электрода свечи). Длительная работа с детонацией и калильным зажиганием недопустима для двигателя и ведет к его разрушению.
Детонация и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (98). но выше степени 11 и этого «не хватает».
Теперь посмотрим, что происходит при малых нагрузках. Вот мы убавили газ и поехали медленнее. Что это значит для бензинового мотора? Когда мы отпускаем педаль акселератора, на впуске перекрывается дроссельная заслонка, а это значит, что мы уменьшаем не только количество подаваемого топлива, но и количество воздуха. Меньше воздуха в цилиндре — меньше давления в конце сжатия.
А как же бензиновый двигатель с впрыском топлива? Ведь там то можно уменьшить подачу топлива, не уменьшая количество воздуха. Можно, но до определенного предела. Потому, что слишком бедная смесь не будет поджигаться искрой, и чтобы смесь не обеднилась слишком сильно, дроссель все же придется прикрыть, и давление снизится. Меньше давление в цилиндре — меньше момент на выходе.
А что значит отпустить педаль у дизеля? Это значит, что в цилиндр будет подаваться меньше топлива. Но количество всасываемого воздуха останется прежним, и давление в конце такта впуска не изменится. Да, смесь в цилиндре станет бедной , но дизель благополучно работает и на бедной смеси, ведь там другой принцип воспламенения и другое топливо..
И дизель остается эффективным и при малых нагрузках.
Вот, мы и дошли до главного, если мы хотим сделать бензиновый двигатель экономичным, и при этом более мощным, то мы должны избавить его от детонации и научить питаться бедной смесью.
На некалорийной пище. Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем 17:1. Но ведь можно заполнить чилиндр более бедной смесью, а непосредственно к свече подавать более богатую,которая загорится. В форкамерном двигателе эта идея и была заложена.
Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование внешнее — форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалась непосредственно в цилиндр….
Бензиновые двигатели с непосредственным впрыском появились довольно давно и применялись в авиации уже в годы Второй Мировой войны. Двигатели для автомобилей тоже разрабатывались, по крайней мере в нашей стране их испытывали уже в конце 40-х. Однако еще долгое время не удавалось справиться с серьезными недостатками непосредственного впрыска, в частности — «дизельным» дымлением на мощностных режимах. Да и мотор получался довольно дорогим, а потому экономически невыгодным. И непосредственным впрыском практически перестали заниматься.
Но не японцы. На Mitsubishi раньше других осознали, какую пользу может принести непосредственный впрыск в условиях ожесточения экологических норм, а бензин в Японии дешевым никогда не был. 15 лет усилий увенчались успехом, первые доведенные до готовности моторы с непосредственным впрыском бензина были представлены публике на Фракфуртском и Токийском автосалонах осенью 1995 года. Их обозначили GDI (Gasoline Direct Injection — непосредственный впрыск бензина). Спустя год на японском рынке появился серийный Mitsubishi Galant 1.8 GDI и наконец, в 1997 году европейцам была предложена Carusma с двигателем 1.8 GDI.
Как устроен GDI. Действительно, этот двигатель напоминает по конструкции обычный бензиновый и дизель. В каждом цилиндре присутствует и свеча зажигания и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм). Форсунка обеспечивает два режима впрыска топлива.
Обратим внимание на следующие особенности . Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке ( такая организация воздушного потока позволяет достичь оптимальныой концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количество воздуха входит по инерции.
Поршень необычный , сверху есть выемка сферической формы. Форма поршня обеспечивает три важных функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.
Как работает GDI. В работе GDI различают три возможных режима в зависимости от режима движения.
Работа на сверхбедных смесях. Этот режим используется на малых нагрузках: при спокойной городской езде и загородном движении на скорости до 120 км/час. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия. Топливо впрыскивается компактным факелом и смешиваясь с воздухом, направляется сферической выемкой поршня. В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.
Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Но поскольку было бы желательно повысить степень сжатия, то важным становится недопустить детонацию и калильное зажигание. Впрыск топлива осущесвтляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и испаряясь, охлаждает воздух в цилиндре. Благодаря охлаждению снижается поверхность детонации и калильного зажигания.
И еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора.
Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации еще возрастает. Поэтому впрыск осущесвтляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр наполняется сверх бедной смесью (примерно 60:1), в котором детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, ктоторая доводит соотношение воздуха и топлива в цилиндре до 12:1. А на подготовку детонации времени уже не остается.
Итак, что в конце концов получается на выходе. Степень сжатия удалось поднять до 12-12.5, улучшилось наполнение воздухом. Двигатель устойчиво работает и на очень бедной смеси. Результат: по сравнению с «обычным» бензиновым двигателем GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа.
Но это в Японии. Из-за того, что бензин в Европе содержит больше серы, при подготовке европейской версии мотора, от одного из преимуществ, повышения мощности, пришлось отказаться…
Но это уже история. Сегодня двигатели с непосредственным впрыском топлива GDI успешно устанавливаются на многих моделях автомобилей разных марок и производителей…
www.gpmar.ru
Система непосредственного впрыска топлива GDI: что это такое и как работает?
Система непосредственного впрыска топлива применяется на бензиновых двигателях последних поколений с целью повышения их экономичности и увеличения мощности. Она предполагает впрыск бензина напрямую в камеры сгорания цилиндров, где и происходит его смешение с воздухом и образование топливовоздушной смеси. Первыми двигателями, которые были оснащены такой системой впрыска, стали моторы GDI (Mitsubishi). Аббревиатура GDI — расшифровывается как «Gasoline Direct Injection», что дословно переводится как «непосредственный впрыск бензина».
Устройство и принцип действия системы GDI
В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi), FSI или TSI (Volkswagen), JIS (Toyota), CGI (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.
Конструктивные особенности двигателей GDI
Система питания воздухом двигателя GDI Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов: Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа. Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом. Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела. Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом. Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.
Отличия моторов прямого впрыска топлива GDI. Особенности работы двигателей GDI
По факту мы имеем некий симбиоз дизельного и бензинового двигателей в одном и каждый производитель именует такую систему по своему. GDI двигатели у Mitsubishi, FSI ставит обозначение VW, D4 обозначение Toyota. От дизеля GDI унаследовал систему впрыска и ТНВД, от бензинового двигателя сам тип топлива и свечи зажигания. Родоначальником моторов GDI стала компания Mitsubishi, когда в 1995 году был представлен Mitsubishi Galant 1.8 GDI. Сегодняшний двигатель с непосредственным впрыском это сложная система механизмов и электронных блоков.
Двигатель с непосредственным впрыском топлива явился миру гораздо раньше — в 50-х годах такие моторы использовал Daimler-Benz на своих гоночных машинах.
Различия (разновидности) двигателей GDI. Марки автомобилей, где используется GDI
Предпосылки создания и массового перехода большинства ведущих автопроизводителей на системы впрыска, аналогичных GDI, были достаточно предсказуемы. Экологические нормы, требующие усовершенствования систем выхлопа отработанных газов, а так же глобальная задача по созданию экономичных двигателей. В двигателях GDI реализованы несколько типов смесеобразования топливовоздушной смеси, это позволило выполнить задачи по экономии топлива, более полному сгоранию смеси и дополнительно увеличить мощность. В совокупности такой двигатель получился благодаря доработанной системе прямого впрыска, где не малую роль играет электронная начинка. Блок управлением двигателя, через датчики, раскиданные по системе, оперативно реагирует на малейшие изменения поведения автомобиля и подстраивает работу топливной системы под необходимые требования водителя
Преимущества (плюсы) двигателей GDI
Особенностью двигателей с непосредственным впрыском является возможность работы в нескольких видах смесеобразования. Это является неоспоримым плюсом, так как многообразие в смесеобразовании дает максимальную эффективность использования топлива. При исправно работающей системе непосредственного впрыска мы получим экономию топлива за счет режима работы на сверхобедненной смеси, причем без потери мощности. В двигателях GDI увеличенная степень сжатия топливовоздушной смеси, это помогает избежать калильного зажигания и детонации, а таким образом увеличивается ресурс. Так же в положительные моменты двигателя с непосредственным впрыском нужно отнести существенное снижение выброса в атмосферу углекислого газа и других вредных веществ, а это достигается за счет многослойного смесеобразования, в свою очередь дающее более полное сгорание смеси, что дополнительно влияет на мощность двигателя.
Система GDI в результате работы обеспечивает несколько видов смесеобразования:
— послойное;
— стехиометрическое гомогенное ;
— гомогенное.
Такое многообразие делает работу двигателя экономичным, лучшее качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов.
Недостатки (минусы) двигателей GDI
Описание двигателей GDI было бы не полным, без упоминания отрицательных моментах эксплуатации. Главный минус GDI связан со сложностью самой системы впуска и подачи топлива. В таком варианте впрыска, двигатель GDI становится крайне чувствительным к качеству используемого топлива. В итоге проблема закоксовывания форсунок становится актуальной для водителя, потеря мощности и увеличение расхода топлива никого не обрадует. Так же в минусы можно отнести сложность обслуживания и стоимость ремонта, замены деталей и агрегатов топливной системы, поэтому важным моментом является контроль за состоянием топливной системы автомобиля.
Да, в обслуживании двигатель GDI дороже, но рабочие характеристики перекрывают этот минус. Тем более, есть средства помогающие повысить ресурс капризных деталей и узлов.
Профилактика неисправностей моторов GDI
Профилактика — это простое решение для владельца автомобиля с системой непосредственного впрыска GDI или аналогичными системами. Как мы уже писали выше, качество топлива будет играть основную роль. Понятно, что без лабораторных исследований судить о качестве топлива невозможно, поэтому в качестве профилактических мер и защиты топливной системы от возникающих проблем могут помочь топливные присадки. Компания Liqui Moly один из мировых лидеров в производстве автохимии рекомендует, для поддержания необходимого уровня смазывающих и очищающих присадок в используемом топливе применять Langzeit Injection Reiniger арт. 7568. Постоянное применение присадки значительно снизит риск возникновения поломок связанных с топливом, пакеты присадок, поднимающие смазывающие свойства топлива надежно защитят топливную аппаратуру от скорого износа. Для лечения и профилактики загрязнений форсунок так же есть надежное средство, арт. 7554 Очиститель систем непосредственного впрыска топлива Direkt Injection Reiniger. Заменяет стендовую очистку форсунок, работает по нагару, смолам и чистит камеру сгорания. Немаловажный момент, что топливные присадки Liqui Moly начинают работать в топливной системе при повышении температуры, а в баке происходит только смешивание с топливом.
Стоит ли покупать автомобили с двигателями GDI
При должном подходе и своевременном обслуживании владелец автомобиля с системой GDI получает комфортный в управлении автомобиль с высокой тягой, мощностью и хорошей экономией топлива. И как показывают продажи таких автомобилей, на дорогах встречаться они будут чаще.
Насос системы охлаждения двигателя (помпы): устройство виды и принцип работы,фото
Топливный насос высокого давления (ТНВД): что это такое и для чего он нужен,виды,фото
Керамические колодки: плюсы и минусы,какие выбрать,отзывы,фото
ЭГУР Servotronic: что это такое и как он работает?
ПОХОЖИЕ СТАТЬИ:
- Тойота хайлендер: описание,технические характеристики,безопасность,комплектация,фото,видео.
- 2016 Германия: наиболее часто украденные бренды и модели автомобилей
- volkswagen passat b3: обзор,описание,фото,видео,характеристика .
- bmw m5 f10 описание дизайн технические характеристики фото видео
- Автомобильный бензин АИ 95 или АИ 92: какой лучше для автомобиля?
- HanTeng Red 01 — интересная электрическая концепция, несмотря на решетку для терки сыра
- Volkswagen Amarok 2017 года фото видео обзор описание комплектация.
- Volkswagen c coupe gte: обзор,описание,фото,видео,комплектация.
- Mercedes GLE: обзор,двигатели,интерьер,внешний вид,цена,фото,видео.
- Статистика продаж новых автомобилей в 2017 году в Германии.
- Какая охлаждающая жидкость лучше всего подходит для немецкого автомобиля?
- Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
- Honda N-WGN 2020 года — последний японский автомобиль Kei
- Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
- Бмв е90: описание,обзор,фото,видео,комплектация,характеристики
Что такое непосредственный впрыск топлива, бензина
Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы
Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.
По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.
Прямой впрыск топлива: устройство системы непосредственного впрыска
Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.
Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.
Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.
Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.
Система непосредственного впрыска: конструктивные особенности
Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:
- контур высокого давления;
- бензиновый ТНВД;
- регулятор давления;
- топливную рампу;
- датчик высокого давления;
- инжекторные форсунки;
Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.
РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.
Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.
Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.
Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу и распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.
Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.
Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.
Как работает система непосредственного впрыска топлива
Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.
Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.
- Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
- Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
- Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.
За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».
Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).
В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.
Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.
Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.
Что в итоге
Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.
Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.
Не нашли интересующую Вас информацию? Задайте вопрос на нашем форуме.Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.