Магия турбонаддува: как это устроено?
В 80-х компания SAAB, создающая реактивные самолеты и уже выпустившая несколько весьма неоднозначных (в плохом смысле) автомобилей, наконец совершила грандиозный ход — установила турбонаддув на свою новую серийную модель. Сейчас такое решение вряд ли назовут грандиозным, да и в те времена SAAB были далеко не первыми. Однако сразу после появления на свет SAAB 99 Turbo началась настоящая турбо-лихорадка. Слово «турбо» стало синонимом слова «круто». Появилось турбо-всё: турбо-холодильники, турбо-бритвы, турбо-очки, турбо-жвачка и т. д. Даже еженедельная рубрика телеканала Discovery по понедельникам называется Turbo! Но, возвращаясь к турбонаддуву, что это такое и как он работает? Рассказываем далее.
Говоря простым языком, если машина «турбо», значит у нее под капотом есть «кастрюля» с вентилятором, который крутится и изо всех сил толкает по каналам в мотор воздух, а дальше, как сказал известный телеведущий, творится колдовство и машина едет быстрее.
Если говорить более техническим языком, то все немного сложнее. Зачем вообще турбонаддув нужен? Автомобили ездят на горючем топливе. Топливу нужен кислород, чтобы гореть. В атмосферных двигателях воздух попадает в камеру сгорания самостоятельно, как бы по приглашению. Он засасывается прямо из атмосферы с, соответственно, атмосферным давлением. В турбированные же движки воздух попадает в том количестве и под тем давлением, как это будет решено конструкторами, что очень благоприятно сказывается на показателях мощности.
А теперь поговорим непосредственно про турбонаддув. Во-первых, на самом деле он называется нагнетатель. Во-вторых, он бывает разный. Основу любого нагнетателя составляет воздушный компрессор — та самая кастрюля с вентилятором, которая загоняет в мотор дополнительный воздух. А различие составляет способ получения энергии для работы. Таким образом, нагнетатели делятся на две категории: турбонагнетатель и механический нагнетатель.
Говоря простым языком, если машина «турбо», значит у нее под капотом есть «кастрюля» с вентилятором, который крутится и изо всех сил толкает по каналам в мотор воздух, а дальше, как сказал известный телеведущий, творится колдовство и машина едет быстрее.
Турбонагнетатель (турбина) получает энергию от переработанного топлива. В выхлопной системе устанавливается небольшая турбина, которую раскручивают выхлопные газы. Ее вращение передается в воздушный компрессор, и он делает свое дело. Механический нагнетатель, который гораздо чаще называют просто компрессор, работает на ременном приводе: он забирает энергию вращения непосредственно у двигателя, как, например, автомобильный генератор. В русском языке существует некая путанница между понятиями «турбина», «компрессор» и «нагнетатель», а вот в английском все очень просто — у них есть turbocharger и supercharger.
А какая между ними разница? Ведь установка того или иного нагнетателя сильно влияет на мощность и динамику автомобиля. Давайте разбираться.
Турбина забирает энергию вращения от потока выхлопных газов. А пока потока нет — турбина не крутится, следовательно мотор работает как простой атмосферник, и автомобиль едет соответственно. Это называется понятием «турбояма» и характерно для всех двигателей с турбиной. Компрессор же забирает вращение непосредственно от мотора, а следовательно подхватывает ваше желание ехать быстрее уже на низких оборотах двигателя, что положительно сказывается на общей динамике автомобиля. Однако турбина, все так же за счет работы от выхлопных газов, дает в итоге больший прирост мощности, чем компрессор. Существуют модели автомобилей, заводские и тюнингованные, на которые хитрецы устанавливают и то, и другое, решая тем самым проблему турбоямы и недостатка мощности. Стоит сказать и про надежность — у турбины гораздо больше сложных деталей, а значит выше вероятность поломки.
А как в итоге воздух попадает через нагнетатель в двигатель? В отличе от атмосферников, он совершает целое путешествие. Помимо воздушного фильтра, он проходит через нагнетатель, а потом через интеркуллер. Это устройство по сути является обычным радиатором, охлаждающим разогретый в нагнетателе воздух. У прохладного воздуха больше плотность, он занимает меньший объем, и таким образом подавать в мотор охлажденный воздух гораздо выгоднее. Дальше происходит стандартный для камеры сгорания процесс: воздух и топливо сжигаются и отправляются через выхлопную систему прочь из автомобиля, по пути раскручивая турбину, если, конечно, она там есть.
Турбо-день на телеканале Discovery! Каждую неделю по понедельникам в 22:00 (мск) смотрите новые серии шоу «Быстрые и громкие», а в 22:55 (мск) — шоу «В ГАС на прокачку».Принцип работы турбины – как она работает
Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.
Принцип работы ДВС
Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.
Принцип работы турбины
Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.
Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.
Механизм изменяемой геометрии
Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.
Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.
Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.
Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.
Турбонаддув — это… Что такое Турбонаддув?
Турбонаддув — один из методов агрегатного наддува, основанный на утилизации энергии отработавших газов. Основной элемент системы — турбокомпрессор, иногда — турбонагнетатель с механическим приводом.
История изобретения
Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США. Номер патента (1006907 October 1911 Buchi).
История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путем сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности на 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.
Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.
В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г.на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми легковыми автомобилями, оснащенными турбинами были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.
Начало использования турбодвигателей на спортивных автомобилях, в частности на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время, почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет, мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.
Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем, в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel. При помощи турбокомпрессора производителям удалось увеличить эффективность работы дизельного двигателя до уровня бензинового, сохранив при этом значительно более низкий уровень выброса в атмосферу выхлопных газов. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходе, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины, и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.
Принцип работы
Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.
Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.
Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.
Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.
Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W).
Состав системы
Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.
См. также
Ссылки
Что такое турбина и турбонаддув — устройство и принцип работы.
С того момента, как появилась такая профессия, как автомобильный конструктор, возникла проблема увеличения мощности моторов. По всем законам физики, мощность мотора напрямую зависит от количества горючего, что сжигается за один цикл. Чем больше горючего при этом расходуется, тем мощность выше. Но, возникает вопрос – как увеличить количество лошадиных сил под капотом своего автомобиля? Тут есть несколько нюансов.
Для того чтобы происходил процесс горения необходим кислород. Благодаря этому становится ясно, что горит нечистое топливо, а его смесь с кислородом. При этом вся смесь должна быть в определенном балансе. Например, что касается бензиновых моторов, то топливо к воздуху смешивается в пропорции 1 к 15. При этом берется во внимание состав горючего и режим его работы.
Видно, что кислорода требуется в 15 раз больше, чем самого топлива. Из этого следует, что увеличение подачи топлива ведет за собой и обязательное увеличение подачи кислорода. Зачастую двигатели самостоятельно засасывают воздух из-за разницы в давлении между атмосферой и цилиндром. Отсюда появляется и прямая зависимость между объемом цилиндра и воздуха, который попадает в него. Именно таким образом и поступала американская автомобильная промышленность, которая выпускает большие двигатели с огромнейшим расходом топлива. Но, есть ли возможность в одинаковый объем загнать, как можно больше воздуха?
Такой способ есть и его впервые изобрел Готтлиб Вильгельм Даймлер. Один из основателей компании Daimler Chrysler. Немец достаточно сильно разбирался в двигателях и уже в 1885 году понял, каким образом можно загнать туда больше кислорода. Он придумал загонять воздух в мотор при помощи специального нагнетателя, который был в виде компрессора, что получал вращение от моторного вала и благодаря этому сжатый воздух успешно загонялся в цилиндры.
Все изменилось, когда швейцарский инженер-изобретатель — Альфред Бюхи сделал сенсационное открытие. Он был главным при создании дизельного двигателя в Sulzer Brothers и он никак не мог свыкнуться с той мыслью, что двигатели были очень тяжелыми и габаритными, а мощности выдавали недостаточно. При этом он не хотел заимствовать энергию двигателя. Благодаря этому в 1905 году Альфред Бюхи получил патент на первое на планете устройство, которое было создано для нагнетания, что применяло энергию для двигателя, выдаваемую выхлопными газами. Другими словами, он создал — турбонаддув.
Данная идея была очень проста и гениальна. Выхлопные газы задают вращение колесу с лопатками точно также, как ветер вращает лопасти мельницы. Отличие только в том, что данное колесо меньшего размера, а лопастей больше. Это колесо имеет название – ротор турбины, который находится на одном и том же валу, где располагается и колесо компрессора. Поэтому турбонагнетатель можно поделить на две части, первая из которой — это ротор, а вторая – компрессор. Ротор вращается благодаря выхлопным газам, а, в свою очередь, компрессор работает, как вентилятор и благодаря этому дополнительный воздух поступает в мотор. Полностью вся конструкция имеет название турбонагнетатель или турбокомпрессор.
При этом, кислород, что попадает в мотор, необходимо дополнительно охладить, это необходимо делать для того, чтобы увеличить давление, при этом загнав в цилиндр больше воздуха. Из-за того, что сжать холодный воздух по сравнению с теплым — намного легче.
Кислород, который проходит через турбину, сам по себе нагревается из-за сжатия, а также из-за некоторых нагретых частей турбонаддува. Подаваемый в мотор воздух, охлаждается с применением промежуточного охладителя. Воздух, проходя через радиатор, отдает свое тепло в атмосферу. При этом холодный воздух плотнее загоняется в цилиндр в большем количестве.
Чем больше газа проникает в турбину, тем она чаще вращается, и соответственно больше воздуха проникает в сам цилиндр и увеличивается мощность. Стоит сказать, что эффективность именно такого метода, по сравнению с приводным турбонаддувом, в том что для того, чтобы обслужить себя, нагнетатель тратит от энергии двигателя, около 1.5%. Это обусловлено тем фактом, что энергия к турбинному ротору поступает не благодаря замедлению выхлопного газа, а за счет его охлаждения. При этом потраченная энергия повышает коэффициент полезного действия двигателя. Благодаря этому автомобиль с нагнетателем становится максимально экономичным, по сравнению с остальными похожими двигателями примерно одинаковой мощности.
Вращение ротора в турбине может быть до 200 тысяч оборотов в минуту, следующий факт относится к раскаленным газам, которые доходят до 1000 градусов по Цельсию. Из всего этого следует тот факт, что нагнетатель, который может сдержать подобные нагрузки долгое время создать достаточно сложно и дорого.
Из-за этого нагнетатель был популярен исключительно во времена Второй Мировой Войны и только в самолетах. В 50-х годах компания из Америки (Caterpillar) смогла встроить нагнетатель к тракторному двигателю, а специалисты из компании Cummins смогли создать первые турбодизельные двигатели для грузовых машин. На легковых машинах, которые получили серийное производство, такие двигатели стали появляться гораздо позже. Это произошло в 1962 году, практически сразу появилось две модели Chevrolet Corvair Monza и Oldsmobile Jetfire.
Стоит добавить, что проблематичность и высокая стоимость конструкции, не являются главными недостатками. Сама по себе эффективность работы турбонаддува, напрямую зависит от максимального числа оборотов двигателя. Из-за того, что на малых оборотах, выхлопных газов производится недостаточное количество, соответственно ротор не раскручивается на максимально возможную мощность и, как следствие, дополнительный кислород практически не задувается в цилиндры. Поэтому зачастую происходит так, что до 3 000 оборотов мотор не тянет, но уже после 4-5 тысяч оборотов, он резко «стреляет», эта проблема называется – турбоямой. При этом размер турбины напрямую зависит на ее разгон. Чем она больше, тем разгон дольше. Именно из-за этого, те двигатели, что имеют большую мощность и соответственно турбину высокого давления зачастую испытывают проблемы связанные с турбоямой. А те турбины, которые создают низкое давление, практически не имеют никаких проблем с провалом тяги, но при этом и мощность они могут поднять достаточно маленькую по отношению с первыми.
Практически полностью избавиться от такой проблемы, как турбояма может помочь схема с последовательным надувом, когда на достаточно малых оборотах мотора, работает маленький малоинерционный турбокомпрессор. Маленький – увеличивает тягу на низких оборотах, в то время, как большой включается во время, когда обороты начинают расти, вместе с давлением на выпуске. Еще сто лет назад систему последовательного наддува применяли в суперкаре Porsche 959. На данный момент же, такие системы применяются во многих марках, начиная от Land Rover и BMW, а в бензиновых моторах фирмы Volkswagen эту роль играет приводной нагнетатель.
На заводских двигателях зачастую применяют одиночный турбокомпрессор twin-scroll, в народе его называют «парой улиток». Каждая из таких улиток заполняется выхлопами, от разных цилиндров. Но, даже, несмотря на это, обе улитки подают выхлопные газы в одну турбину, в итоге максимально качественно раскручивая ее, как на больших, так и на малых оборотах.
Но зачастую все-таки можно встретить исключительно пару одинаковых турбокомпрессоров, которые параллельно друг от друга обслуживают отдельные цилиндры. Это является стандартной схемой, для стандартных V-образных турбодвигателей, где каждый блок имеет свой турбонаддув. Даже, несмотря на то, что мотор V8 компании M GmbH, который впервые был установлен на Bmw X6 M и X5 M оборудован перекрестным выпускным коллектором, позволял турбокомпрессору паре улиток получать газы выхлопа из цилиндров, которые находились в разных блоках.
Для того чтобы турбокомпрессор работал на максимуме своих возможностей, при всех диапазонах оборотов, можно поменять геометрию рабочей части. Исходя из оборотов, что производит улитка, там работают специальные лопатки и изменяется в некоторых дозволенных пределах форма сопла. Благодаря этому, мы имеем «супертурбину», которая отлично может работать во всех диапазонах оборотов. Такие схемы были продуманы и оговорены достаточно давно, но реализовать их на деле, появилась возможность лишь недавно. Стоит, при этом отметить, что изначально турбины, на которой поменяна геометрия, появилась исключительно на дизельном моторе, благодаря тому, что температура выхлопных газов, намного меньше. Что касается бензиновых двигателей, то первым был Porsche 911 Turbo.
Саму конструкцию турбодвигателя привели в максимальную комплектацию, относительно недавно и их актуальность сильно возросла. При этом сами турбокомпрессоры оказались актуальными не только, как для форсирования двигателя, но и для увеличения экономичности и экологичности выхлопа.
Моторные масла для двигателей с турбонаддувом / турбиной
Увеличивая удельную мощность ДВС с помощью турбонаддува, производители автомобильных двигателей сталкиваются с целым рядом проблем, для разрешения которых в числе прочего приходится формулировать и специфические требования к моторному маслу. Учитывая эти нюансы и все большее распространение турбодвигателей, ROLF Lubricants GmbH закладывает совместимость с турбокомпрессорами (включая системы турбонаддува высокого давления) в состав выпускаемых масел.
Почему двигателю с турбонаддувом нужно особое масло
Любой способ форсирования увеличивает нагрузку на двигатель. И хотя турбонаддув, в отличие от общепринятого мнения, является наиболее щадящим методом увеличения мощности (нагрузки растут пропорционально квадрату оборотов или диаметра поршня, но линейно в зависимости от давления наддува), специфика турбированных двигателей включает в себя следующие особенности.
- Рост температуры масла в ряде зон: на днище поршня, в головке блока цилиндров и особенно в каналах смазки самой турбины. Это вынуждает вводить в конструкцию турбонагнетателей многих моделей рубашки водяного охлаждения, соединенные с системой охлаждения самого двигателя.
- Увеличение удельных нагрузок на коренные и шатунные вкладыши, поршневой палец, юбку поршня пропорционально давлению наддува.
- Быстрое падение давления масла в системе смазки после остановки двигателя при медленном остывании самого турбокомпрессора, особенно при отсутствии принудительного охлаждения картриджа.
- Увеличение давления в камере сгорания приводит к росту объема газов, проникающих в картер через поршневые кольца. Так ускоряется окисление и старение масла, быстрее падает щелочное число.
Следовательно, масло для турбированных двигателей автомобилей должно иметь гораздо более высокую стабильность характеристик при высоких температурах, что в стандартах вязкости и качества прямо не оговаривается. Работа с увеличенными удельными нагрузками требует улучшения антифрикционных, противоизносных и противозадирных характеристик. В целом по свойствам моторные масла для двигателей с турбонаддувом близки к специализированной продукции для работающих на бензине моторов воздушного охлаждения из-за схожих требований к температурной стабильности и стойкости к окислению.
Изначально общей проблемой турбомоторов было быстрое накопление нагара в каналах смазки подшипников турбины и в них самих. Это было связано как раз с высокой рабочей температурой турбины. Пока смазочный материал подавался в нее под давлением, он не успевал перегреваться, но на остановленном моторе остатки масла в подшипниках перегревались от турбины, остывавшей достаточно медленно. Варианты для атмосферных моторов просто не учитывали подобную специфику, и владельцам турбированных автомобилей в инструкциях приходилось рекомендовать давать мотору проработать несколько минут на холостых оборотах перед глушением, чтобы дать турбине остыть, не прерывая поток масла через нее. Далее для повышения удобства появились турботаймеры, а мощные турбины стали снабжаться водяным охлаждением, но по-прежнему условия эксплуатации масла в турбомоторе жестче, чем в атмосферном двигателе равного объема.
Технические характеристики и спецификации
Система стандартизации качества API, наиболее широко применяемая в мире для сертификации, прямо стала упоминать характеристики турбонаддува только для дизелей, поскольку именно на них турбокомпрессоры начали массово применяться раньше. Для двигателей со средним давлением наддува первым установленным классом качества был API CC, в то время как дизели высокого наддува уже требовали масла не менее API CD. В последующие классы, вплоть до актуального CJ-4, свойства, необходимые для совместимости с турбинами, включались обязательно.
Для бензиновых двигателей стандарт API не указывает обязательную совместимость с турбокомпрессорами, по совокупности требований нужные свойства имеют масла класса не ниже SG. Однако с продукцией устаревших классов приходится неизбежно снижать сроки замены, желательно применение турботаймеров. Для старых автомобилей со штатным или установленным самостоятельно турбонаддувом можно рекомендовать переход на материалы высшей категории качества в сравнении с указанной производителем.
Как выбрать масло для двигателя с турбонаддувом
Масло для турбированного двигателя должно иметь по возможности наибольшую динамическую вязкость при +150 °С (обязательно измеряется в ходе испытаний на соответствие классам вязкости по SAE J300), так как это прямо указывает на стойкость к повышенным температурным нагрузкам.
При наличии у производителя автомобиля особых требований к допускам смазочного материала их необходимо учитывать в обязательном порядке. Например, для получения допуска VW 505.00 масло должно соответствовать требованиям к воздействию на эластомерные уплотнения, не оговариваемые спецификациями API/ACEA. Продукция с допуском VW 506.00 может применяться в турбомоторах не старше 1999 года выпуска, так как более старые турбодвигатели Volkswagen имеют другие требования к высокотемпературной вязкости при формально том же классе SAE.
Каталог масел ROLF для двигателей с турбонаддувом
Масла для легковых автомобилей с бензиновыми и дизельными двигателями
Масла для грузовых автомобилей с дизельными двигателями
Полезные советы и рекомендации
В двигателях с высоким давлением наддува, часто эксплуатируемых под нагрузками, близкими к предельным, оптимально применять современные синтетические масла, соответствующие международным классификациям API/ACEA и требованиям производителя к высокотемпературной вязкости по SAE или несколько превышающие их. Например, в автоспорте используют масла с индексами SAE 50 и даже SAE 60, хотя «исходный» двигатель работал на SAE 40. Одновременно можно посоветовать снизить интервалы технического обслуживания двигателя.
Особенности двигателя TSI в автомобилях Volkswagen
Силовыми агрегатами TSI комплектуются все современные модели Volkswagen. Аббревиатура от Turbo Stratified Injection обозначает двигатель, в котором впрыск топлива происходит непосредственно в цилиндр, а воздух нагнетается двойным турбонаддувом.
В результате эксплуатационные характеристики мотора более высокие, чем у двигателя с обычной турбиной, но из-за этого ему требуется более качественное обслуживание, которое нереально осуществить в кустарных условиях.
Этот тип двигателя самый популярный среди автомобилей Volkswagen. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На Golf и Jetta кроме TSI устанавливают также MPI. Единственная модель, которая не комплектуется TSI — Туарег.
Каким образом работает двойной турбонаддув?
Для понимания принципа действия двойного турбонаддува стоит рассмотреть, как формируется воздушно-топливная смесь на разных оборотах:
- до 2 400 об/мин работает исключительно механический компрессор, а турбокомпрессор простаивает, поскольку нет необходимости в дополнительной мощности и недостаточно давления выхлопных газов;
- от 2 400 до 3 500 об/мин для нагнетания воздуха подключается турбокомпрессор, но только если электроника регистрирует очень динамичное увеличение потребности в мощности, к примеру, при резком старте с места;
- от 3 500 об/мин и выше заслонка турбокомпрессора полностью открыта и он один работает на нагнетание воздуха.
В результате такого комплексного подхода становится возможным тонкое изменение мощности двигателя в большом диапазоне оборотов. Практически отсутствует «турбояма», которая характерна для силовых агрегатов с классической турбиной. В механическом нагнетателе используется редуктор, благодаря которому скорость вращения компрессора достигает 17 500 об/мин для наиболее эффективного давления в системе подачи воздуха.
Особенности охлаждения моторов TSI
Здесь применяется система охлаждения из двух контуров: один для головки блока цилиндров, а второй для самого блока. Количество охлаждающей жидкости в 2 раза больше в головке цилиндров, чтобы быстрее выполнялся прогрев и снижалась вероятность её перегрева, поскольку она изначально нагревается более интенсивно, чем блок цилиндров. Дополнительно система оснащена двумя термостатами, которые срабатывают при температуре в 80 и 95 °C.
Для охлаждения турбины используется еще более интересная схема. Дополнительный водяной насос с электроприводом охлаждает её в течение еще 15 мин. после остановки двигателя. В результате сложный механизм никогда не перегревается, что увеличивает его ресурс.
Недостатки технологии
Наибольшим минусом этих двигателей является их относительно плохой прогрев в холодное время года. Классическая схема разогрева на холостых оборотах в минусовую температуру малоэффективна — вам придётся долго ожидать тепла из дефлектора отопителя. В такую погоду на рабочую температуру мотор выходит достаточно долго даже при езде. К сожалению, такая плата за отменные рабочие параметры этих силовых агрегатов.
Рекомендации по эксплуатации
Любая вещь, созданная человеком, рано или поздно придёт в негодность и даже такие качественные двигатели не вечны. Однако если вы будете использовать качественные расходники и уделите пристальное внимание на состояние цепи ГРМ, то детище немецких инженеров не будет расстраивать вас форс-мажорными поломками в течение многих десятков тысяч километров.
Нюанс с долгим прогревом можно просто решить. Достаточно установить автономный предпусковой подогреватель мотора. Ведь такие приспособления уже не первое десятилетие используются в грузовиках и в нашем случае они помогут вам не мёрзнуть во время коротких зимних поездок.
Турбированные моторы & атмосферные: устройства и принцип работы | Справочная информация
Классические бензиновые и дизельные силовые агрегаты в последние несколько лет стали сдавать позиции лидеров в автомобилестроении. На смену им и в дополнение приходят турбированные и атмосферные двигатели, которые всего пару десятилетий назад можно было встретить только на гоночных болидах.
Сегодня очень часто при выборе современных моделей транспортных средств, автолюбители не знают, на каком силовом агрегате лучше всего остановиться — купить автомобиль с «атмосферником» или турбиной? У каждого из этих механизмов есть свои специфические особенности, а также плюсы и минусы в эксплуатации.
Устройство и принцип работы турбированного двигателя
Турбированный силовой агрегат считается одним из самых старых среди двигателей внутреннего сгорания, так как был придуман почти столетие назад. Принцип его работы заключается в том, в цилиндры подается увеличенное количество воздуха, для этого используется нагнетающее устройство – турбокомпрессор («турбина»). Это создает лучшие условия для сгорания топлива и, соответственно, увеличивает мощность двигателя.
По принципу работы турбированный двигатель не отличается от обычного атмосферного двигателя. А нагнетание дополнительного воздуха позволяет эффективнее использовать полный объем поступающей горючей смеси, что положительно сказывается на динамических характеристиках автомобиля.
Турбокомпрессор использует для работы энергию выхлопных газов. Он подсоединяется к выхлопной системе, в результате чего часть отработанных газов поступает на лопасти турбины и вращает крыльчатку компрессора.
Для охлаждения силового агрегата с турбокомпрессором используют интеркуллер. Это обычный радиатор, но вместо охлаждающей жидкости в нем циркулирует воздух.
Достоинства турбодвигателя
Главный козырь турбированных силовых агрегатов — это, конечно же, их высокая мощность. Двигатели с турбокомпрессором по динамике разгона значительно превосходят своих атмосферных «собратьев» при одинаковом объеме. При этом потребление топлива увеличивается ненамного, так как турбина использует энергию уже отработавших газов, а не тратит горючее на создание новых.
Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».
Недостатки турбодвигателя
В отличие от атмосферного двигателя, турбодвигатель очень привередлив к качеству потребляемого горючего. Если не контролировать этот вопрос, то турбина очень скоро может выйти из строя. Кроме того, из-за специфики конструкции двигатели с турбонаддувом следует прогревать в любое время года.
Этот тип силовых агрегатов нуждается в особой заботе в вопросах использования смазочных материалов. Обычные минеральные и синтетические масла категорически запрещается заливать в двигатель с турбиной. Для них предназначаются специальные виды масел, которые достаточно дорого стоят. Кроме того, как отмечают специалисты автосервиса Favorit Motors, замена масла рекомендуется каждые 10 тысяч километров (при эксплуатации в городских условиях).
Устройство и принцип работы атмосферного двигателя
Система запитывания атмосферного двигателя основана на инжекторном или карбюраторном механизме. Топливовоздушная смесь формируется в строгой пропорции: 1 часть бензина + 14 частей воздуха.
Принцип работы «атмосферника» заключается в том, что топливо впрыскивается в цилиндр без сопротивления. Это стало возможным благодаря сложным и тонким настройкам в распределительном валу, который открывает впускающий клапан. После впрыска смесь сгорает, а выделившиеся газы приводят в движение поршни.
Атмосферный двигательный аппарат назван так потому, что давление воздуха при попадании в мотор, равняется одной атмосфере. В его конструкции не используются турбонагнетатели, он функционирует при стандартном атмосферном давлении.
Преимущество в использовании атмосферного двигателя заключается в том, что на каких бы оборотах он не работал в данный момент, у него всегда будет определенный запас мощности. Это позволяет максимально быстро ускоряться при любой начальной скорости движения. До максимально возможного количества оборотов атмосферный силовой агрегат «раскрутится» за считанные секунды.
Достоинства атмосферного двигателя
Рано или поздно даже самый надежный мотор может потребовать вложений и качественного ремонта. Атмосферный агрегат имеет более простое строение, чем турбированный мотор, а потому и проведение ремонтных работ обойдется дешевле.
Срок службы атмосферника гораздо выше, чем у турбированного мотора. Это обусловлено более мягкими условиями эксплуатации и отсутствием повышенных нагрузок. Поэтому рабочий ресурс атмосферного двигателя в среднем вдвое выше, чем у турбины.
В качестве приятного бонуса для автовладельцев специалисты ГК Favorit Motors могут привести следующий факт. Атмосферные агрегаты не требуют постоянно контроля смазки и менее требовательны к качеству используемых масел. В их конструкции отсутствуют устройства, которые нуждаются в дополнительной смазке. Это же касается и выбора топлива: атмосферный двигательный агрегат менее требователен к качеству горючего. Кроме того, замена смазочной жидкости производится реже — каждые 15-20 тысяч километров пробега.
И еще один плюс «атмосферника». Российские водители уже смогли убедиться, что атмосферный силовой агрегат даже зимой прогревается быстрее, чем его турбированный собрат.
Недостатки атмосферного двигателя
Самым главным минусом такого двигателя можно считать отсутствие высоких крутящих моментов. Атмосферный агрегат проигрывает турбированному в плане мощности. Такой автомобиль будет идеальным для неспешных поездок по городу, но в качестве трассового авто для молодежных гонок явно не подойдет.
Расход топлива для такого двигателя будет достаточно высок. Как отмечают специалисты ГК Favorit Motors, в среднем автомобиль с атмосферным двигателем потребляет не менее 11-12 литров горючего на 100 километров пути.
Итоги
Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.
В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.
Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.
Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.
Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.
Подборка б/у автомобилей Skoda OctaviaТурбокомпрессор против нагнетателя: в чем разница?
По мере того, как государственное законодательство и экологические соображения приводят к переходу от энергоемких безнаддувных двигателей большого объема к более экономичным двигателям меньшего размера, автопроизводители все чаще используют турбокомпрессоры и нагнетатели, чтобы получить больше энергии из меньшего количества топлива. Оба устройства служат «заменой смещения», помогая втиснуть такое же количество воздуха, которое более крупный двигатель естественным образом вдохнет в меньший двигатель, чтобы они могли производить ту же мощность, когда ступня водителя ударяется об пол.Оказывается, кислород труднее попасть в двигатель, чем топливо. (Это также цель, которую системы закиси азота служат на рынке послепродажного обслуживания.) Давайте по-новому взглянем на относительные преимущества турбонаддува по сравнению с наддувом.
В чем разница между турбонагнетателем и нагнетателем?
«Нагнетатель» — это общий термин для воздушного компрессора, который используется для увеличения давления или плотности воздуха, поступающего в двигатель, обеспечивая большее количество кислорода для сжигания топлива.Все самые ранние нагнетатели приводились в движение мощностью от коленчатого вала, обычно с помощью шестерни, ремня или цепи. Турбокомпрессор — это просто нагнетатель, который приводится в действие турбиной в потоке выхлопных газов. Первые из них, датированные 1915 годом, назывались турбокомпрессорами и использовались в радиальных авиационных двигателях для увеличения их мощности в более разреженном воздухе, обнаруживаемом на больших высотах. Сначала это название было сокращено до турбокомпрессора, а затем до турбо.
Посмотреть все 5 фотоЧто лучше: турбонагнетатель или нагнетатель?
Каждый из них может использоваться для увеличения мощности, экономии топлива или того и другого, и у каждого есть свои плюсы и минусы.Турбокомпрессоры используют часть «бесплатной» энергии, которая в противном случае полностью терялась бы в выхлопе. Привод турбины действительно увеличивает противодавление выхлопных газов, которое оказывает некоторую нагрузку на двигатель, но чистые потери имеют тенденцию быть меньше по сравнению с прямой механической нагрузкой, связанной с приводом нагнетателя (самые большие нагнетатели, приводящие в действие драгстер, работающий на верхнем топливе, потребляют 900 лошадиных сил на коленчатом валу. в двигателе мощностью 7500 лошадиных сил). Но нагнетатели могут обеспечить свой наддув почти мгновенно, тогда как турбонагнетатели обычно страдают некоторой задержкой реакции, в то время как давление выхлопных газов, необходимое для вращения турбины, увеличивается.Очевидно, что драгстер с самым высоким уровнем топлива, пытающийся проехать квартал за четыре секунды, не имеет времени тратить время на ожидание повышения давления выхлопных газов, поэтому все они используют нагнетатели, в то время как автомобили, которым поручено повысить среднюю корпоративную экономию топлива (CAFE), не могут себе позволить тратить драгоценную мощность на воздуходувки, поэтому они в основном используют турбины. Но с появлением мягкой гибридизации и 48-вольтовых электрических систем можно ожидать более широкого использования нагнетателей, приводимых в действие свободно рекуперированным электричеством, сохраняемым во время замедления и торможения.В новом шестицилиндровом двигателе Mercedes-Benz M256, который теперь устанавливается на такие автомобили, как CLS 450 и GLE 450, используется именно такая система, как и в новом Land Rover Defender с двигателем такого же размера и конфигурации с максимальным запасом хода.
Сколько мощности добавляет турбонагнетатель или нагнетатель?
Выше мы отметили, что количество кислорода, которым двигатель может «дышать», является ограничивающим фактором относительно того, какую мощность он может производить, потому что технология топливных форсунок более чем способна подавать столько топлива, сколько возможно сжечь. с количеством кислорода в баллоне.Безнаддувные двигатели, работающие на уровне моря, получают давление воздуха 14,7 фунтов на квадратный дюйм, поэтому, если турбонагнетатель или нагнетатель добавляет к двигателю 7 фунтов на квадратный дюйм, то сами цилиндры получают примерно на 50 процентов больше воздуха и теоретически должны производить примерно на 50 процентов больше. мощность. Обычно так не получается. Сжатие всасываемого воздуха добавляет тепла, которое вместе с дополнительным давлением увеличивает вероятность повреждения двигателя перед детонацией или «звоном», поэтому время часто приходится несколько замедлять.Это может ограничить количество времени, в течение которого топливо должно полностью сгореть, и, следовательно, частично снижает выигрыш в мощности. Большинство современных двигателей с турбонаддувом и / или нагнетателем также включают промежуточные охладители, которые помогают отводить часть тепла, добавляемого турбонагнетателем или нагнетателем. В конце концов, обычно ожидается, что добавление на 50 процентов большего количества воздуха даст на 30-40 процентов больше мощности.
Просмотреть все 5 фотоКак турбины / нагнетатели экономят газ?
Когда они работают, турбины и нагнетатели в основном помогают сжигать на больше газа, но когда они прикреплены болтами к двигателю, который в противном случае был бы слишком мал, чтобы адекватно удовлетворить потребности транспортного средства с точки зрения ускорения или при буксировке, и т.п., они помогают экономить топливо во время круизов на малой мощности, которые составляют большую часть нашей поездки. Один из способов, которым это происходит, — это уменьшение насосных потерь, которые возникают, когда двигатель большого рабочего объема работает с дроссельной заслонкой пять процентов или меньше — он должен усердно работать, чтобы всасывать воздух мимо в основном закрытой дроссельной заслонки. Для того же количества мощности может потребоваться 20-процентное открытие дроссельной заслонки на меньшем двигателе, что приведет к меньшему количеству насосных работ. (Вот почему многие новые автомобили не создают достаточного вакуума для работы механических тормозов, дверей смешанного воздуха систем климат-контроля и т. Д., и либо оснащены вспомогательными вакуумными насосами, либо используют электрические элементы управления для этих элементов.)
Почему турбонагнетатели более популярны, чем нагнетатели в серийных автомобилях?
Турбины, как правило, превосходят компрессоры с кривошипно-шатунным приводом в критическом тесте экономии топлива FTP75, который определяет количество миль на галлон с наклейками на стекле и рейтинг CAFE корпорации, поэтому турбины можно найти на более распространенных транспортных средствах, начиная с 1,0-литрового Ford EcoSport за 21 240 долларов турбо для любого из четырех двигателей с турбонаддувом в пикапе Ford F-150.Между тем, как показывает этот список всех автомобилей с наддувом, доступных в США, нагнетатели в основном устанавливаются на высокопроизводительные автомобили. Конечно, все Volvo, оснащенные 2,0-литровыми двигателями с двойным наддувом, такие как модели XC60 и XC90 T6 и T8, имеют как турбокомпрессор , так и нагнетатель . Эта конструкция использует сильные стороны каждого из них — наддув нагнетателя на низких оборотах обеспечивает давление до тех пор, пока большой турбонагнетатель не раскрутится, и в этот момент нагнетатель отсоединяется от коленчатого вала, чтобы не терять мощность.
Просмотреть все 5 фотоА как насчет Twin Turbos, Biturbos, Quad Turbos и Hot Vees?
Twin-turbo означает, что есть два турбокомпрессора. Они могут работать независимо (как это часто бывает в двигателях с V-образной конфигурацией, где отдельные турбины работают с каждой стороны двигателя) или последовательно. Когда они используются последовательно, малый и большой турбонаддув объединяются в пару, и в этом случае маленький турбонагнетатель быстро раскручивается, чтобы уменьшить турбо-задержку, а затем, когда поток выхлопных газов увеличивается, более крупный турбонагнетатель начинает подавать наддув.Обратите внимание, что некоторые называют первый битурбо (Mercedes обозначает многие из своих автомобилей AMG Biturbos), а второй — твин-турбо, но мы не делаем этого различия. Естественно, квад-турбо означает, что их четыре, как в Bugatti Chiron. В его большом двигателе W-16 используются две пары последовательных турбонагнетателей. В течение многих лет большинство V-образных двигателей с турбонаддувом свешивали турбины с выпускных коллекторов на внешней стороне двигателя, при этом всасываемый воздух входил в долину V-образного сечения. В последнее время возникла тенденция к тому, чтобы обратить это вспять и подавать всасываемый воздух на внешние стороны V-образного сечения, при этом выхлопная труба и турбины расположены внутри V-образного сечения.Это дает преимущество в значительном уменьшении габаритов двигателя и, при надлежащей вентиляции капота, может привести к более низким температурам под капотом.
Просмотреть все 5 фотоКакие бывают типы нагнетателя?
Из-за необходимости размещать турбокомпрессор рядом с выхлопом, его форм-фактор с самого начала был склонен к центробежному (турбинному) компрессору. Также доступны центробежные нагнетатели с ременным приводом, которые также довольно легко установить в модернизированных установках послепродажного обслуживания.Пакстон популяризировал эту установку, и ее дизайн теперь продается под названием Vortech (как показано выше). Одним из интересных вариантов этой концепции является центробежный нагнетатель с регулируемым передаточным числом, который включает в себя бесступенчатый привод шкива, установленный на обычном компрессоре. Заводские нагнетатели на V-образных двигателях обычно упаковываются в V-образной впадине и, следовательно, предпочитают более длинную, более низкую и более узкую упаковку. Из них тип Roots наиболее популярен среди заводских автомобилей с наддувом, к которым относятся новые Ford Mustang Shelby GT500 и Camaro ZL1.В этой установке два вала, вращающихся в противоположных направлениях, имеют выступы, которые заставляют воздух опускаться вниз через валы — обычно воздух входит в верхнюю часть устройства и выходит из нижней части. Двухвинтовые нагнетатели Lysholm нагнетают воздух от одного конца нагнетателя к другому. Винтажный Ford GT начала 2000-х использовал этот тип, как и двигатель цикла Миллера Mazda Millenia.
Винтовой нагнетатель типа G-Lader был одобрен Volkswagen в течение некоторого времени и предлагался на Corrado здесь, в США. Этот странный дизайн включает в себя пару переплетенных спиралей, которые вызывали большое трение и оказались проблематичными.Лопастной нагнетатель — это еще одна конструкция, которая мало использовалась в автомобильной промышленности с тех пор, как нагнетатели Powerplus устанавливались на некоторые автомобили MG в 1930-х годах. Это сложно объяснить без сложных иллюстраций и связано с большим трением. Последний тип, заслуживающий упоминания, — это нагнетатель волн давления, известный как система Comprex. Он имеет вращающийся цилиндр, разделенный на многочисленные камеры, открытые с обоих концов. Один конец выходит на поток выхлопных газов, другой — на впуск.Выхлопные импульсы толкают всасываемый воздух к стороне всасывания, прежде чем трубка снова герметизируется, отражая импульсную волну выхлопа обратно к стороне выпуска. На обратном пути камера снова попадает в воздухозаборник, куда воздух врывается вслед за отступающей волной. Есть некоторое смешение газов, и это работает только на низких оборотах двигателя, поэтому лучше всего подходит для дизелей. Примерно 150 000 дизельных двигателей Mazda получили эту установку, но ни один из них не был продан на нашем берегу.
Могу ли я добавить к моему автомобилю турбонагнетатель или нагнетатель?
Существуют комплекты вторичного рынка для обоих, но, как правило, немного проще прикрутить болтами нагнетатель, для которого нужен только кронштейн, шкив коленчатого вала и ремень, а также интеграция во впускную систему — плюс, возможно, добавление промежуточного охладителя.Турбонагнетатель должен быть интегрирован как в выхлопную, так и в впускную системы, а также может быть добавлен промежуточный охладитель. Тем не менее, такие сайты, как JEGS.com, с радостью продадут вам все необходимое, чтобы добавить любой из них.
Что такое турбокомпрессор и как он работает?
Турбокомпрессор — это устройство, устанавливаемое на двигатель транспортного средства, которое предназначено для повышения общей эффективности и производительности. Это причина, по которой многие автопроизводители предпочитают использовать турбонаддув в своих автомобилях.Новые Chevrolet Trax и Equinox предлагаются с двигателями с турбонаддувом, и с течением времени ими будет оснащаться все больше и больше автомобилей.
Как это работает?Турбина состоит из двух половин, соединенных валом. С одной стороны, горячие выхлопные газы вращают турбину, соединенную с другой турбиной, которая всасывает воздух и сжимает его в двигателе. Это сжатие дает двигателю дополнительную мощность и эффективность, потому что чем больше воздуха может попасть в камеру сгорания, тем больше топлива может быть добавлено для большей мощности.
ПреимуществаПомимо дополнительной мощности, турбокомпрессоры иногда называют устройствами, которые предлагают «бесплатную мощность», потому что, в отличие от нагнетателя, для его привода не требуется мощность двигателя. Горячие и расширяющиеся газы, выходящие из двигателя, приводят в действие турбокомпрессор, поэтому нет утечки полезной мощности двигателя. Двигатели с турбонаддувом также не подвержены такому воздействию, как двигатели без наддува, когда они едут на больших высотах.Чем выше высота набирает атмосферный двигатель, тем труднее ему получать кислород из-за разреженной атмосферы. Турбонагнетатель решает эту проблему, потому что он нагнетает кислород в камеру сгорания двигателя, иногда при давлении в 2 раза превышающем атмосферное.
Турбокомпрессоры также улучшают топливную экономичность транспортного средства, однако существует неправильное представление о транспортных средствах с турбонаддувом и топливной экономичности. Если взять двигатель без наддува и установить на нем турбонагнетатель, это не улучшит топливную экономичность.Способ, которым производители повышают эффективность использования топлива с помощью турбонаддува, заключается в уменьшении размера двигателя и его последующем турбонаддуве. Например, возьмите рядный 4-цилиндровый двигатель без наддува объемом 2,5 л, уменьшите рабочий объем до 1,4 л и затем наденьте на него турбонаддув. Меньший двигатель с турбонаддувом по-прежнему будет иметь те же показатели производительности (или немного лучше), но из-за меньшего рабочего объема он также будет потреблять меньше топлива.
Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?
Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? РекламаКриса Вудфорда.Последнее изменение: 18 февраля 2021 г.
Не бывает идеального изобретения: мы всегда можем сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбросить вас по шоссе или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе. Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае. получать.Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!
Фото: в типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки. Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.
Что такое турбокомпрессор?
Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).
Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они при этом тратят энергию впустую. Выхлоп смесь горячих газов выкачивается со скоростью и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли ли как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.
Автомобильные двигатели вырабатывают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.
Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле. Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!
Рекламные ссылкиКак работает турбокомпрессор?
Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля.А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины. В виде горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину.Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»). Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отработанной энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.
Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу. Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).
Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или бензонасосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров.Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются, и вал, к которому они присоединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается. Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.
Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины).Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры. Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.
Как работает турбокомпрессор — подробнее
Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель.Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:
- Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
- Вентилятор компрессора помогает всасывать воздух.
- Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
- Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
- Охлажденный сжатый воздух поступает в воздухозаборник цилиндра.Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
- Поскольку цилиндр сжигает больше топлива, он быстрее производит энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
- Отработанный газ из цилиндра выходит через выхлопное отверстие.
- Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
- Вращающаяся турбина установлена на том же валу, что и компрессор (показан здесь бледно-оранжевой линией).Итак, когда вращается турбина, вращается и компрессор.
- Выхлопной газ выходит из машины, расходуя меньше энергии, чем в противном случае.
На практике компоненты можно было соединить примерно так. Турбина (красная справа) забирает отработанный воздух через свой впуск, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.
Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
Откуда берется дополнительная мощность?
Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать непосредственно из отработанного выхлопного газа — и это иногда сбивает людей с толку.С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля. Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.
Сколько дополнительной мощности вы можете получить?
Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более и более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!
Преимущества и недостатки турбокомпрессоров
Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.
Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбокомпрессора заключается в том, что вы получаете большую выходную мощность. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.
« Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащаться одним двигателем. ”
The New York Times, 2018
Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонаддува, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.
Кто изобрел турбокомпрессор?
Кому мы благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), инженер-автомобилестроитель, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбокомпрессором, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.
ОднакоБючи была не единственной важной фигурой в этой истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, в том числе Луи Рено, Готлиб Даймлер и Ли Чедвик также успешно экспериментировал с системами наддува.
Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
Рекламные ссылкиУзнать больше
На сайте
Книги для старших читателей
Книги для юных читателей
- Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).
Статьи
- Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
- «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
- Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
- Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
- Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
- 50 лет назад турбонагнетатель был революционной технологией Джима Косса. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конечном итоге преодолели свои первые проблемы.
- Чак Скватриглиа, «Если ты не водишь турбо», то скоро будешь. Wired, 24 сентября 2010 г. Ожидается, что к 2015 г. количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности двигателей меньшего размера.
- Turbo приветствует экологические достижения Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.
Патенты
Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:
- Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбомотор, разработанный самим изобретателем турбокомпрессоров. Патент США №
- №2,309,968: Управление турбокомпрессором и метод, разработанный Ричардом Дж. Ллойдом, корпорация Garrett, выдан 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
- Патент США № 4083188: Система турбонагнетателя двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
- Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.
eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation
Следуйте за нами
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:
Цитировать эту страницу
Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]
Подробнее на нашем сайте…
Как работает турбокомпрессор?
Для получения дополнительной информации о том, как работает турбонагнетатель, вы можете прочитать более подробную информацию на этих других страницах ниже.
Что такое турбокомпрессор?Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух при атмосферном давлении (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.
В настоящее время турбины используются в основном в дизельных двигателях, но теперь наблюдается переход к турбонаддувам в серийных бензиновых двигателях.
Поскольку все двигатели зависят от воздуха и топлива, мы знаем, что увеличение любого из этих элементов в установленных пределах приведет к увеличению мощности двигателя, но если мы увеличим количество топлива, мы должны быть в состоянии сжечь его все.
Для удовлетворения наших требований к мощности для этого требуется воздух; подача большего количества воздуха представляет гораздо больше проблем, чем заправка большего количества топлива. Воздух находится вокруг нас все время и находится под давлением (на уровне моря это давление составляет около 15 фунтов на квадратный дюйм). Именно это давление заставляет воздух поступать в цилиндры.
Для увеличения расхода воздуха установлен воздушный насос (турбонагнетатель), и в двигатель подается сжатый воздух.
Этот воздух смешивается с впрыснутым топливом, позволяя топливу сгорать более эффективно, увеличивая выходную мощность двигателя.
Еще одна сторона турбонаддува, которая может представлять интерес, — это двигатель, который регулярно работает на больших высотах, где воздух менее плотный и где турбонаддув восстанавливает большую часть потерянной мощности, вызванной падением давления воздуха.Мощность двигателя на высоте 8000 футов составляет всего 75% от его мощности на уровне моря.
Как работает турбокомпрессор?
Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое соединено валом с колесом компрессора. Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.
По мере того, как отработанные газы выпускаются из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и, таким образом, завершают цикл.
1. Захват
Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбонагнетатель. Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.
Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока.В отличие от этого, турбонагнетатель с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.
2. Отжим
Выхлоп ударяется о лопатки турбины, вращая их со скоростью до 150 000 об / мин. Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.
3. Вентиляционное отверстие
Выполнив свое предназначение, выхлопные газы проходят через выход в каталитический нейтрализатор, где они очищаются от 90 300 угарного газа, оксидов азота и других загрязняющих веществ перед выходом через выхлопную трубу.
4. Сжать
Между тем, турбина приводит в действие воздушный компрессор, который собирает холодный чистый воздух из вентиляционного отверстия и сжимает его до давления на 30 процентов выше атмосферного, или почти 19 фунтов на квадратный дюйм. Плотный, богатый кислородом воздух поступает в камеру сгорания.
Дополнительный кислород позволяет двигателю более полно сжигать бензин, обеспечивая большую производительность от меньшего двигателя. В результате двигатель TwinPower вырабатывает на 30 процентов больше мощности, чем двигатель такого же размера без турбонаддува.
Как работает турбокомпрессор | Cummins
Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува состоит в том, что воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива. . Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.
Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя.Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу. Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.
Как работает турбокомпрессор?
Турбокомпрессор состоит из двух основных частей: турбины и компрессора.Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопной газ (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопа (4) .
Компрессор также состоит из двух частей: колеса компрессора (5) и корпуса компрессора (6) . Принцип действия компрессора противоположен турбине.Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.
- Колесо турбины
- Корпус турбины
- Выхлопной газ
- Выходное отверстие для выхлопных газов
- Колесо компрессора
- Корпус компрессора
- Вал из кованой стали
- Сжатый воздух
Узнайте, как работает Turbo
Турбокомпрессорыvs.Нагнетатели: что лучше?
Слова «с турбонаддувом» и «с наддувом» теперь вошли в американский лексикон. Их часто произносят все, от политиков до тележурналистов и некоторых комиков в машинах за чашкой кофе. И хотя оба термина обычно понимаются как означающие, что чему-то придается дополнительная жизнеспособность, становится более мощным или высокоэмоциональным, ускоряется или усиливается, большинство людей не понимают технологий, которые на самом деле придают этим словам их значение. Что такое турбокомпрессоры и нагнетатели — и какой из них лучше?
Для большей мощности требуется больше воздуха
Количество энергии, которое может произвести двигатель внутреннего сгорания, зависит в первую очередь от того, сколько топлива он может сжечь и насколько быстро и эффективно он преобразует это тепло в механическую силу.Но для сгорания топлива требуется воздух (на самом деле кислород, содержащийся в воздухе), поэтому максимальная мощность двигателя во многом зависит от того, сколько воздуха он может потреблять, чтобы сжечь это топливо.
Отсюда и концепция принудительной подачи в двигатель большего количества воздуха, чем он обычно потребляет, чтобы он мог сжигать больше топлива и производить больше мощности. Этот дополнительный всасываемый воздух может подаваться либо турбонагнетателем, либо нагнетателем. Оба являются воздушными компрессорами, но работают и работают по-разному.
Две технологии с одной целью
Турбокомпрессор использует скорость и тепловую энергию обжигающе горячих (и расширяющихся) выхлопных газов, выходящих из цилиндров двигателя, для вращения турбины, которая приводит в движение небольшой компрессор или рабочее колесо, которое, в свою очередь, заправляет больше воздуха обратно в двигатель.Нагнетатель также нагнетает дополнительный воздух в двигатель, но вместо этого приводится в действие двигателем механически через ремень, идущий от коленчатого вала, или от электродвигателя.
В типичном турбокомпрессоре, подобном этому, компрессор в серебристом впускном корпусе втягивает и сжимает воздух, который затем питает двигатель. Компрессор приводится в движение выхлопной турбиной в темном корпусе агрегата.Getty Images
Плюсы и минусы
Каждая из этих технологий повышения мощности имеет свои преимущества и недостатки, но наиболее очевидным отличием за рулем является небольшая задержка реакции вашей правой ноги в автомобиле с турбонаддувом, особенно когда вы сильно нажимаете на дроссельную заслонку. .Это связано с тем, что турбокомпрессору требуется момент, чтобы «раскрутиться», прежде чем выдать импульс дополнительной мощности — требуется секунда, чтобы тепло и давление выхлопных газов увеличились настолько, чтобы вращать турбонагнетатель после нажатия на педаль газа. По понятным причинам это называется «задержка разгона» или «задержка турбонаддува».
На двигатель V-8 Dodge Challenger Hellcat установлен нагнетатель. Он снимается с коленчатого вала широким черным ремнем в передней части двигателя.Chris Doane Automotive
Напротив, у нагнетателя нет задержки; Поскольку его воздушный насос напрямую связан с коленчатым валом двигателя, он всегда вращается и мгновенно реагирует.Прирост мощности, который он обеспечивает, и, следовательно, реакция двигателя, которую вы чувствуете через сиденье штанов, немедленно увеличивается прямо пропорционально тому, насколько сильно вы нажимаете на педаль акселератора.
В то время как основной недостаток турбонагнетателя — задержка наддува, нагнетатель — эффективность. Поскольку нагнетатель использует собственную мощность двигателя, чтобы вращаться, он откачивает мощность — все больше и больше по мере увеличения оборотов двигателя. По этой причине двигатели с наддувом обычно менее экономичны. Тем не менее, для развития мега-мощности с мгновенным откликом дроссельной заслонки «толкнуть вас в спину» правила наддува.Он используется на нескольких мощных машинах, таких как Chevrolet Corvette Z06 мощностью 650 л.с. и ZR1 на 755 лошадиных сил, а также на SRT Challenger Hellcats and Demons мощностью 700 л.с.
И победитель —
Автопроизводители решили: турбокомпрессор выигрывает с большим отрывом. Дело не столько в мощности, сколько в топливной эффективности. Федеральные требования к постоянно улучшающейся экономии топлива, строгие стандарты выбросов парниковых газов и желание клиентов экономить топливо побуждают автопроизводителей использовать турбины, а не нагнетатели.
Турбокомпрессор позволил автопроизводителям заменить множество двигателей V-6 более эффективными рядными четырехцилиндровыми двигателями с турбонаддувом, которые обеспечивают, по крайней мере, эквивалентную мощность и часто более высокий крутящий момент, в то время как турбированные шестерки заменили многие двигатели V-8 с более высокими характеристиками. спортивные и роскошные автомобили. Глобальная информационная компания IHS Markit насчитывает около 220 моделей 2018 года, предлагающих по крайней мере один двигатель с турбонаддувом, по сравнению с 30, доступными с двигателем с наддувом.
Volvo была первым производителем автомобилей в США.S., которые сочетают в себе турбонаддув и наддув для увеличения мощности двигателя. Система установлена на его верхнем 2,0-литровом рядном четырехцилиндровом двигателе.Крис Амос
Один производитель, шведский производитель Volvo, решил не выбирать между двумя технологиями. В настоящее время на некоторых из его 2,0-литровых рядных четырехцилиндровых двигателя используются оба типа ускорителей мощности — небольшой обычный (с приводом от двигателя) нагнетатель для низких частот и турбокомпрессор для более высоких оборотов.
Электрический наддув: в городе появились новые технологии
Недавно на рынок вышла третья альтернатива для повышения мощности: электрический наддув.Производительные модели Mercedes-AMG CLS53 и E53 2019 года предлагают новый 3,0-литровый рядный шестицилиндровый двигатель с турбонаддувом мощностью 429 л.с., оснащенный нагнетателем с электрическим приводом, который дополняет турбонаддув на высоких оборотах. Электродвигатель вращает компрессор, чтобы обеспечить всплеск крутящего момента на низких оборотах, который заполняет разрыв в мощности, который обычно ощущается как турбо-задержка.
Mercedes-AMG — первый производитель, внедривший электрический нагнетатель, который используется для усиления мощности своего нового седана CLS53 на низких оборотах.Мерседес-AMG
BorgWarner, производитель агрегата, говорит, что электрический нагнетатель «обеспечивает наддув по требованию до тех пор, пока турбокомпрессор не вступит во владение, улучшая наддув на низких оборотах двигателя и почти устраняя турбо-задержку». После интенсивной эксплуатации этого двигателя мы можем подтвердить, что он работает так, как рекламируется. Скоро он будет доступен для двигателей как минимум двух других автопроизводителей.
Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.
Между тем, у нас есть явный победитель в этой многолетней битве между технологиями повышения мощности — по крайней мере, по мнению автопроизводителей, которые выбрали турбонаддув почти для всех своих современных двигателей с усилением мощности. Но на самом деле этот поединок по армрестлингу продолжается. Есть основания полагать, что в будущем двигателей внутреннего сгорания обе технологии будут работать бок о бок.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.
Как турбины работают на автомобилях?
Почему сейчас так много двигателей с турбонаддувом?
Турбины не только повышают мощность, но и повышают эффективность. Поскольку турбины используют отработанные газы для выработки энергии, самому двигателю не нужно работать больше. Это означает, что можно использовать двигатель меньшего размера с турбонаддувом для выработки той же мощности, что и более крупный двигатель без наддува.Двигатели меньшего размера всегда более эффективны, чем двигатели большего размера, что увеличивает экономию топлива и снижает выбросы.
Производители автомобилей используют этот факт в дизельных двигателях более 30 лет. Дизельные двигатели особенно подходят для турбонаддува, потому что они имеют более простые системы впуска для смешивания топлива и воздуха и более прочные блоки двигателя, которые могут сдерживать огромное давление воздуха, создаваемое турбинами. Примерно за последние 15 лет производители усовершенствовали металлургию, которая позволяет легкому бензиновому блоку двигателя из легкого сплава выдерживать сверхвысокое турбо-давление.Ранее блоки бензиновых турбомоторов обычно изготавливались из тяжелого чугуна или стали. Более легкий двигатель означает, что весь автомобиль меньше весит и более эффективен.
Результатом всего этого стал бензиновый двигатель, такой как 1,0-литровый 3-цилиндровый EcoBoost от Ford, который может производить больше мощности, чем старый 1,6-литровый 4-цилиндровый безнаддувный бензиновый двигатель Ford, при этом обеспечивая лучшую экономию топлива и меньшие выбросы.
Турбодизели являются основой линейки двигателей Range Rover Evoque.Какие еще преимущества есть у турбин?
Помимо увеличения мощности, турбины увеличивают крутящий момент — силу двигателя — особенно на низких оборотах.Это полезно для небольших бензиновых двигателей, которые, как правило, не развивают большой крутящий момент на высоких оборотах без турбонаддува. Дизельные двигатели без наддува, напротив, выдают большой крутящий момент на низких оборотах. Добавление турбонаддува усиливает эффект, поэтому турбодизели кажутся такими сильными, если вы нажимаете на педаль газа на скорости, скажем, 50 миль в час на высшей передаче.
Автомобили с турбонаддувом также имеют более тихие выхлопные трубы. Турбонагнетатель эффективно снижает количество выхлопных газов, поэтому он не такой громкий, как автомобиль без турбонаддува.Однако вы можете услышать фурор, когда убираете ногу с дроссельной заслонки. Это «перепускной клапан», который удаляет лишний газ из турбонагнетателя, когда он не нужен.
Ford Puma получил 1,0-литровый двигатель с турбонаддувомЕсть недостатки?
Вы часто встретите термин «турбо-задержка», который относится к временной задержке между нажатием дроссельной заслонки и передачей турбонагнетателем дополнительной мощности. Это просто функция времени, которое требуется выхлопным газам, чтобы достичь турбонагнетателя и разогнать турбину до нужной скорости.Большая турбина часто преувеличивает эффект.
У современных турбин есть много способов уменьшить запаздывание. Некоторые двигатели даже имеют несколько турбин увеличивающегося размера, которые работают на разных оборотах, и электродвигатели, раскручивающие турбину еще до того, как газы достигают ее, становятся все более распространенными. Определенное количество турбо-лагов неизбежно, но у многих двигателей сейчас их так мало, что их практически невозможно обнаружить.
Turbos — еще одна вещь, которая может пойти не так. Они могут и делают — некоторые двигатели особенно подвержены проблемам с турбонаддувом.Густой белый дым от выхлопных газов и потеря мощности — это ключи к разгадке. Пренебрежение, злоупотребления и большой пробег — обычные причины, но если за автомобилем правильно ухаживать, это не должно быть проблемой.
Volvo XC60 T8 имеет турбонагнетатель и нагнетательЧем отличается нагнетатель?
Нагнетателитакже увеличивают мощность за счет нагнетания большего количества воздуха в двигатель, но турбина вращается самим двигателем. Они без задержек, обеспечивают больший крутящий момент и потрясающе звучат, но не так эффективны.
.