Двигатель двс: Двигатель внутреннего сгорания — Википедия – Поршневой двигатель внутреннего сгорания — Википедия
Шестицилиндровый двигатель — Википедия
Запрос «V6» перенаправляется сюда; о японском бой-бэнде см. V6 (группа). Рядный шестицилиндровый двигатель автомобиля BMW (M20B25) со снятой головкой L6 турбодизель K6S310DR тепловоза ЧМЭ3, рабочий объём 163 лШестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°.
Рядный шестицилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением шести цилиндров, порядок работы цилиндров 1-5-3-6-2-4, и поршнями, вращающими один общий коленчатый вал. Часто обозначается R6[1][2] (от немецкого[3] «Reihe» — ряд), I6 или
В теории I6 в четырёхтактном варианте является полностью сбалансированной конфигурацией относительно сил инерции разных порядков поршней и верхних частей шатунов (силы инерции 1-го порядка разных цилиндров взаимно компенсируют друг друга так же, как и у рядного четырёхцилиндрового двигателя, но, в отличие от последнего, силы инерции 2-го порядка также взаимно компенсируются), сочетая сравнительно невысокую сложность и стоимость изготовления с хорошей плавностью работы. Такую же сбалансированность демонстрирует и V12, работающий как два шестицилиндровых двигателя с общим коленчатым валом.
Однако на малых (холостых) оборотах коленчатого вала возможна некоторая вибрация, вызванная пульсацией крутящего момента. Рядный восьмицилиндровый двигатель, помимо полной сбалансированности, демонстрирует лучшую равномерность крутящего момента, чем рядный шестицилиндровый, но в наше время применяется очень редко из-за целого ряда иных недостатков.
Двигатели конфигурации I6 широко использовались и продолжают использоваться в настоящее время на автомобилях, автобусах, тракторах, речных судах. На легковых автомобилях в последние десятилетия, в связи с повсеместным распространением переднего привода с поперечным расположением силового агрегата, и вообще компоновочных схем с более «плотной» организацией подкапотного пространства, более популярны оказались V-образные шестицилиндровые двигатели как более компактные и короткие, хоть и более дорогие, менее технологичные и сбалансированные. Вместе с тем, отдельные производители не спешат отказываться от рядных шестицилиндровых моторов. Яркий пример — BMW. Более того, современные[когда?] технологии позволяют создать достаточно компактный рядный шестицилиндровый двигатель даже для поперечной установки, правда, на достаточно крупном автомобиле — примером такого силового агрегата служит Chevrolet Epica с передним приводом и поперечно установленными 2,0- и 2,5-литровыми моторами разработки Porsche.
Максимальный рабочий объём рядных шестицилиндровых двигателей практически не ограничен и на судовых дизелях может достигать 1820 дм³ на один цилиндр.
V-образный шестицилиндровый двигатель[править | править код]
V6 фирмы Lancia, первый серийный двигатель такой конфигурации.V-образный шестицилиндровый двигатель — двигатель внутреннего сгорания с V-образным расположением шести цилиндров двумя рядами по три, и поршнями, вращающими один общий коленчатый вал. Часто обозначается V6 (англ. «Vee-Six», «Ви-Сикс»).
Это второй по популярности в наши дни автомобильный двигатель после рядного четырёхцилиндрового двигателя.
Первый серийный V6 появился в 1950 году на итальянской модели Lancia Aurelia.
Технические особенности[править | править код]
V6 — несбалансированный двигатель; он работает как два рядных трёхцилиндровых двигателя, и без дополнительных мер может иметь весьма большой уровень вибраций. В двигателях V6 используется дисбаланс коленвала, создаваемый противовесами (иногда дополнительно применяют маховик и шкив с дисбалансом), уравновешивающий момент от сил инерции 1-го порядка поршней и верхних частей шатунов. Кроме того, иногда (при некоторых углах развала цилиндров) для этого дополнительно используют балансировочный вал, вращающийся со скоростью коленвала, но в противоположную сторону. Это позволяет приблизить их по плавности работы и уровню вибраций к рядному шестицилиндровому двигателю. Момент инерции 2-го порядка, как правило оставляют свободным, так как он имеет небольшую величину и может быть поглощён опорами двигателя.
Как правило, угол развала цилиндров составляет 60, 90 или 120 градусов. Но встречаются и иные варианты, например 54°, 45°, 65°, 75° или 15° (VR6).
Угол развала 90° обычно встречается на двигателях, унифицированных с двигателями конфигурации V8, для которых такой угол развала является основным. В первых двигателях такой конфигурации, по причине того, что технологии тогда не позволяли сделать достаточно прочный коленвал со смещёнными шатунными шейками, а делать полноопорный коленвал с отдельными шейками для каждого шатуна невыгодно, так как по длине двигатель становится сравнимым с исходным V8 (кроме того, это усложняет двигатель), на каждой шатунной шейке располагались (так же, как и в исходном V8) по два шатуна от противоположных цилиндров (схема с 3 кривошипами, пример — Buick Special, а также советский двигатель ЯМЗ-236). Такая конструкция при угле развала 90° позволяет уравновесить момент инерции 1-го порядка без применения балансировочных валов, однако равномерных интервалов поджига смеси она не обеспечивает (рабочие ходы в цилиндрах следуют не равномерно, а через 90 и 150° по углу поворота коленчатого вала, порядок работы цилиндров при этом 1-4-2-5-3-6). Следствием этого является заметная вибрация работающего двигателя, особенно при работе на малых оборотах коленчатого вала, а также грубый и неприятный на слух звук выхлопа, а по плавности хода двигатель больше напоминает трёхцилиндровый. Чтобы уменьшить вибрации и улучшить плавность хода, применяют маховик увеличенной массы. В более современных [когда?] двигателях V6 с углом развала 90° используется усложнённый коленвал со смещёнными шатунными шейками (6 кривошипов), обеспечивающий равномерные интервалы поджига смеси, а момент инерции 1-го порядка уравновешивается при применении балансировочного вала (без него он уравновешивается не полностью, что потребует усовершенствованной подвески двигателя и часто неприемлемо для современного[когда?] легкового автомобиля из-за повышенной вибрации). Однако на болидах формулы-1 (регламент 2014) года используется именно простой коленвал с тремя кривошипами, не обеспечивающий равномерных интервалов поджига, но обладающий большей прочностью и не требующий уравновешивания момента 1-го порядка.
120-градусный развал позволяет получить широкий, но низкий силовой агрегат, что лучше подходит для низких, например, спортивных машин. В нём так же на каждой шатунной шейке располагаются по два шатуна (число шатунных шеек — 3), но за счёт угла развала цилиндров 120° обеспечиваются равномерные интервалы поджига смеси. Такая конфигурация имеет довольно большой момент 1-го порядка, который можно скомпенсировать только при применении балансировочного вала. При всех остальных углах развала (отличных от 120°), чтобы обеспечить равномерные интервалы поджига смеси (через каждые 120° по углу поворота коленвала) и тем самым уменьшить вибрацию двигателя, а также обеспечить плавный ход, каждый шатун располагают на отдельной шатунной шейке коленвала, либо применяют усложнённый коленвал со смещёнными шатунными шейками (это уменьшает длину двигателя, а также упрощает его, но требует усовершенствованния технологии изготовления коленвала).
60-градусный развал позволяет скомпенсировать момент 1-го порядка без применения балансировочных валов. По этой причине, а также благодаря компактности, этот угол развала считается «родным» для V-образных шестёрок. Иногда по каким-либо причинам применяют близкие углы развала, например 54° или 65° при незначительном увеличении вибраций, которые растут по мере отклонения от угла 60°.
Угол развала 15° позволяет сделать одну общую головку для всех цилиндров, а также позволяет использовать порядок зажигания такой же, как у рядного шестицилиндрового двигателя и обладает удовлетворительной сбалансированностью без применения балансировочных валов, что вместе с усовершенствованной подвеской двигателя решает проблему вибраций.
Именно трудности балансировки и являлись основной причиной, сдерживавшей распространение серийных двигателей этого типа. До 1950-х годов такие двигатели создавались, но либо для стационарных установок (например бензогенераторов), либо как опытные образцы.
В 1959 году в США фирма GM начала производство пятилитрового V6, которым оснащались пикапы и субурбаны (гибрид универсала и микроавтобуса на шасси пикапа).
В 1962 году в США пошёл в производство «компакт» Buick Special с 90-градусным V6, разработанным на основе небольшой V-образной «восьмёрки», но он отличался высоким уровнем вибраций и вскоре был снят с производства.
Одним из первых полностью перешёл на V-образные шестицилиндровые моторы (двух семейств — Cologne и Essex, в зависимости от места разработки — ФРГ или Великобритании) европейский филиал «Форда»: с 1965…66 годов они постепенно вытеснили ранее использовавшиеся на наиболее крупных европейских моделях этой марки рядные шестёрки (первоначально европейский «Форд» также повсеместно заменил на своих автомобилях рядные четвёрки на моторы конфигурации V4, принадлежавшие к тем же семействам, что и V6, но впоследствии отказался от них — в то время, как V6 упомянутых выше семейств дожили до 2000-х годов). При этом американский «Форд» оставался крайне консервативен в выборе типов силовых агрегатов, начав выпуск собственных V6 (на основе разработок британского филиала) лишь в начале 1980-х годов (на пике бензинового кризиса рубежа 1970-х — 1980-х годов).
Первый серийный японский V6 появился только в 1983 году у фирмы Nissan — серия Nissan VG, затем более продвинутым японским V6 стал мотор серии 6G от Mitsubishi, появившийся в 1986 году, примечатлен он тем, что устанавливался он на самый дорогой спорткар этой компании Mitsubishi 3000GT и в турбоверсии выдавал аж 320 лошадиных сил, нося индекс 6G72TT.
Использование в автомобилях[править | править код]
V6 — один из самых компактных двигателей, он обычно короче, чем I4, и в большинстве исполнений у́же и короче, чем V8.
В современных[когда?]переднеприводных автомобилях с поперечным расположением двигателя по компоновочным соображениям как правило невозможна установка рядных шестицилиндровых двигателей, что, при повышенных требованиях к мощности в наши дни, обуславливает популярность V-образных шестицилиндровых моторов на автомобилях более высоких классов, несмотря на малую сбалансированность и сложность в производстве в сравнении с I6. Унификация двигателей различных автомобилей приводит к тому, что V6 устанавливают и в машинах с продольным расположением двигателя, в которых, в принципе, нет строгой компоновочной необходимости его применения, — хотя оно и даёт ряд преимуществ. Вместе с тем, на автомобилях того же класса с задним приводом, вроде 5-й серии BMW, всё ещё довольно широко распространены и рядные «шестёрки».
Из советских двигателей серийными V6 были только дизели большого рабочего объёма для грузовиков, и спецтехники: ЯМЗ-236 и СМД-60. Трёхлитровый V6 моделей ГАЗ-24-14 и ГАЗ-24-18 планировался в качестве базового двигателя легкового автомобиля «Волга» ГАЗ-24, но впоследствии в силу целого ряда причин был заменён на рядный четырёхцилиндровый. Однако, была выпущена опытно-промышленная партия этих двигателей, которые использовались на ряде спортивных автомобилей, в частности, на одном из серии «Эстония».
Другим направлением развития является VR-технология, которая зародилась в 1920-е годы, когда компания Lancia выпустила семейство V-образных моторов с очень маленьким углом развала цилиндров (всего 10—20°). «VR» представляет собой аббревиатуру двух немецких слов, обозначающих V-образный и R-рядный, т. е. «v-образно-рядный».[3]
Двигатель представляет собой симбиоз V-образного двигателя с минимально малым углом развала 15° и рядного двигателя, в котором шесть цилиндров расположены V-образно под углом 15°, в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни в блоке размещаются в шахматном порядке.
Двигатель никак не наследует сбалансированность R6[4], но имеет лучшую компактность в сравнении с V6 и R6. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V6. В результате двигатель VR6 получился значительно меньшим по длине, чем R6, и по ширине, чем обычный V6[3].
Рабочий объём варьируется как правило от 2,0 до 5,0 л. Использование конфигурации в двигателях объёмом меньше 2,0 л мало оправдано из-за относительно высокой стоимости изготовления (по сравнению с четырёхцилиндровыми двигателями) и большой (в сравнении с ними же) длины. Однако, подобные случаи имели место, например, мотоцикл Benelli 750 Sei имел двигатель I6 с рабочим объёмом всего 0,75 л.
В настоящее время технология возрождена концерном Volkswagen, который выпустил шестицилиндровые двигатели компоновки VR6. Ставился с 1991 года (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы «AAA» объёмом 2,8 литра, мощностью 174 л/с и «ABV» объёмом 2,9 литра и мощностью 192 л/с.
Имеет два ряда по три цилиндра, которые расположены под углом 180°, причём противостоящие поршни двигаются зеркально (одновременно достигают верхней мёртвой точки). Такой двигатель хорошо уравновешен и имеет малую высоту и низкий центр тяжести, но при этом он довольно широкий. Используется на некоторых автомобилях («Порше», «Субару») и мотоциклах («Хонда Голд Винг»).[источник не указан 482 дня]
- Nunney, M J. Light and Heavy Vehicle Technology.
Четырёхцилиндровый двигатель — Википедия
Рядный четырёхцилиндровый двигатель Четырёхцилиндровый двигатель BMC B-Series, установленный в MG MGB. Разрез. Рядный четырёхцилиндровый двигатель автомобиля ГАЗ-24 (ЗМЗ-24Д и ЗМЗ-2401) отличался достаточно большим, для этой конфигурации, рабочим объёмом (2445 см³).Рядный четырёхцилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением четырёх цилиндров, и поршнями, вращающими один общий коленчатый вал. Часто обозначается I4 («ай-фор») или L4 («Straight-4», «In-Line-Four»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-4 (/4) — например, двигатель автомобиля «Москвич-412».
Конфигурация I4 для четырехтактного двигателя является несбалансированной, но проста в производстве (для двухтактного двигателя с чередованием работы цилиндров через 90° в порядке 1-3-4-2 или 1-2-4-3 такая конструкция — сбалансированная). При этом 4-цилиндровый двигатель имеет примерно на треть меньше деталей, чем 6-цилиндровый того же объёма и мощности, и требует примерно на столько же меньше времени для многих операций по обслуживанию и ремонту. Поэтому она находит применение обычно в сравнительно бюджетных автомобилях с относительно небольшим рабочим объёмом двигателя, а также автомобилях, для которых простота в ремонте и обслуживании важнее уровня комфорта (такси, внедорожники и т. п.).
Современные рядные 4-цилиндровые двигатели имеют рабочий объём обычно от 0,7 до 2,3 литра. С ростом рабочего объёма уровень вибраций значительно возрастает, поэтому на современных двигателях этой конфигурации с рабочим объёмом более 2,0 л, как правило, используются дополнительные балансировочные (успокоительные) валы, позволяющие приблизить уровень вибраций к рядным шестицилиндровым двигателям аналогичного рабочего объёма.
В прошлом, однако, I4 бо́льших рабочих объёмов не были редкостью.
В начале XX века существовали гоночные автомобили с рядными четырёхцилиндровыми двигателями рабочим объёмом 10-17 литров — например, De Dietrich. Мощность этих двигателей, однако, была весьма невелика — обычно порядка 70-100 л. с., что объясняется тем, что их максимальные обороты составляли лишь около 1500 об/мин.
В довоенные годы четырёхцилиндровые автомобильные двигатели большого объёма не были редкостью, особенно на грузовиках. Сюда можно отнести, например, советские ГАЗ М-1, ГАЗ-АА и их производные (3285 см³).
International Harvester с 1915 по 1926 год использовал на своих грузовиках 3,3-литровую нижнеклапанную рядную четвёрку, а в 1961—1972 годах выпускал рядные 4-цилиндровые моторы семейства Comanche рабочим объёмом 2,5 и 3,2 л. Все легковые и грузовые автомобили Ford вплоть до появления в начале 1930-х годов Ford Flathead V8 имели нижнеклапанные рядные четырёхцилиндровые двигатели (фактически двух семейств — Ford T и Ford A). Chrysler c 1926 года и до полного перехода на рядные шестёрки в 1932 году использовал на бюджетных моделях своих марок (S-Series) нижнеклапанные рядные четырёхцилиндровые моторы рабочим объёмом 2,7…3,2 л. Двигатель Pontiac Tempest модели 1961-63 годов имел рабочий объём 3188 см³ и не имел балансировочных валов.
Из относительно недавних примеров, западногерманская фирма Porsche выпускала автомобили с 2990-кубовыми I4.
Советские и российские автомобили «Волга» и УАЗ в течение длительного периода времени (с 1957 по начало 2000-х) оснащались рядными четырёхцилиндровыми двигателями с алюминиевыми гильзованными блоками и клапанным механизмом OHV производства ЗМЗ и УМЗ, которые имели рабочий объём 2,445 литра (имелись версии объёмом 2,9 литра) и не имели балансировочных валов. В настоящее время автомобили УАЗ снабжаются рядными четырёхцилиндровыми моторами производства ЗМЗ семейства 409 (с чугунным блоком и клапанным механизмом DOHC, никак не связанного с ранее упомянутым), с рабочим объёмом 2,7 литра и балансировочными валами.
Все эти двигатели были достаточно малооборотными и относительно тяжёлыми, что, наряду с особыми мерами при конструировании и при правильной настройке, практически сводило на нет нежелательные вибрации по сравнению с I4 меньшего объёма. Хотя, скажем, двигатель «Понтиака» оказался очень чувствителен к настройке карбюратора.
В настоящее время одними из наибо́льших по рабочему объёму серийных рядных четырёхцилиндровых бензиновых двигателей являются японские моторы семейства Toyota 3RZ-FE с рабочим объёмом 2,7 л (Toyota Land Cruiser Prado и другие модели). Четырёхцилиндровые дизели такого и большего объёма не являются редкостью и часто используются на грузовиках и тракторах, для которых уровень вибраций не является определяющим фактором.
V-образный 4-цилиндровый двигатель МеМЗ-965 автомобиля «Запорожец»V-образный четырёхцилиндровый двигатель — весьма редкая конфигурация. Изредка применялся в начале XX-века на мотоциклах, гоночных автомобилях и самолетах. Массовыми реализациями такой конфигурации в отечественном автопроме были лишь двигатели Мелитопольского моторного завода МеМЗ-965, МеМЗ-966, МеМЗ-968, применявшиеся на автомобилях «Запорожец» и ЛуАЗ. Такая конфигурация была выбрана из соображений достижения компактности силового агрегата как в длину, так и в ширину и упрощения его системы воздушного охлаждения. Однако конфигурация V4 полностью несбалансированная и имеет неравномерное чередование вспышек в цилиндрах. По этой причине автомобили «Запорожец» издают при работе характерный неприятный тарахтящий звук (на самом деле в основном из-за системы воздушного охлаждения, для «водяных» V4 это вовсе нехарактерно, по звуку и характеру работы они несколько напоминают V6, с которыми обычно и унифицированы). В мировой практике V4 водяного охлаждения в своё время находили широчайшее применение в модельном ряду европейского филиала Ford Motor Company, в частности на моделях Ford Taunus и Ford Granada, а также (тот же двигатель) на автомобилях SAAB, на которые он ставился вместо двухтакного трёхцилиндрового, опять же, благодаря компактности.
Оппозитный четырехцилиндровый двигатель — поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного. Оппозитный двигатель, в отличие от других четырёхцилиндровых двигателей, самый сбалансированный. Коленчатый вал оппозитного двигателя испытывает меньшие нагрузки, что позволяет развивать большие обороты двигателя и снимать большую удельную мощность, не увеличивая массу.
По сравнению с рядным 4-цилиндровым двигателем имеет (как и V-образный двигатель) более сложную конструкцию.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Käfer, выпущенной за годы производства.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделей, таких как Porsche 997, Porsche 987 Boxster и другие.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru, который устанавливается практически во все модели Subaru c 1963 года. Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров.
Volkswagen Transporter T1 — T3 — бензиновые версии моторов также были оппозитными. Малая высота двигателя позволяла устанавливать его под полом салона.
Оппозитный 4-цилиндровый двигатель устанавливался на Т-26 и некоторые машины Pz I.
- Штаб-квартира BMW — здание в Мюнхене, напоминающее четырёхцилиндровый двигатель.
Н-образный двигатель — Википедия
Материал из Википедии — свободной энциклопедии
64-клапанный h26-двигатель BRM Формулы 1.Н-образный двигатель — двигатель, конфигурация блока цилиндров которого представляет букву «Н» в вертикальном или горизонтальном расположении.
H-образный двигатель можно рассматривать как два оппозитных двигателя, расположенных один сверху другого или один рядом с другим, у каждого из которых есть свои собственные коленчатые валы, которые затем соединяются с одного конца. H-образная конфигурация позволяет создать многоцилиндровые двигатели, которые короче, чем другие варианты, что предоставляет преимущества на воздушных судах. Для гоночных автомобилей данная схема представляет собой недостаток не только из-за высокого центра тяжести из-за расположения одного коленчатого вала над другими, но также и потому, что двигатель сам должен располагаться достаточно высоко от земли, чтобы обеспечить просвет под выхлопные трубы. В плане отношения мощности к весу данная схема также хуже, чем двигатель простой конфигурации, использующий один коленчатый вал.
H-24 двигатель Napier Sabre. Можно видеть два 6-цилиндровых блока правой стороны.- Lycoming Engines
- Fairey Aviation
- Fairey Prince (1939) — H-16 — 1500 л.с.
- Fairey Monarch (1939) — H-24 — 2240 л.с.
- Klöckner-Humboldt-Deutz DZ 710 — H-32, 102.9 литра
- Napier & Son(Великобритания)
- Napier Rapier (1929) — H-16 с воздушным охлаждением вертикали, 8.83 л 340 л. с.
- Napier Dagger (1934) — Н-24, с воздушным охлаждением вертикали, 16.85 литров 890 л. с., развитие Rapier
- Napier Sabre (1938) — Н-24, с водяным охлаждением горизонтальной втулки клапанов, 36.7 литров 3500 л.с.
- Pratt & Whitney
- XH-2240 — H-24, с жидкостным охлаждением,
- XH-2600 — H-24, с жидкостным охлаждением,
- XH-3130 — H-24, с жидкостным охлаждением,
- XH-3730 — H-24, с жидкостным охлаждением,
- Rolls-Royce Eagle (1944) — Н-24, 46.2 литров, в 3200 л.с.
- Н-16 использовался в команде Формулы 1 British Racing Motors (BRM). Джим Кларк одержал победу на Лотус 43 в 1966 году. В качестве двигателя гоночных автомобилей его применение было затруднено из-за высокого центра тяжести, большой тяжести и сложности зубчатого привода двухконтурного газораспределительного механизма для каждой из четырёх головок цилиндров, передачи соединения коленчатых валов и механического впрыска топлива.
- Brough Superior Golden Dream мотоцикл, впервые показанный в 1938 году. 1000 см³ H-4. Было произведено несколько единиц в начале 1939 года. Производственные планы были прерваны c началом Второй Мировой Войны и последующими за ней несколькими годами жесткой экономии.
- Wooler motorcycles построил прототип мотоцикла с подобной конфигурацией и выставил её на British International Motor Show в Earls Court Exhibition Centre в 1948 году и снова в 1951 году. В 1953 был заменен на оппозитный 4-цилиндровый двигатель.
- В 1971 году двигатель подобной конструкции ставился на ВАЗ 21019,но в серию не пошел.
Subaru производит горизонтальные оппозитные 4- и 6-цилиндровые двигатели с водяным охлаждением, которые продаются как h5 H6, и которые не следует путать с H-конфигурацией блока цилиндров двигателя. Схема двигателей Subaru описывается как I4 и I6.
Жидкостный ракетный двигатель замкнутой схемы — Википедия
ЖРД замкнутой схемыЖРД замкнутой схемы (ЖРД закрытого цикла) — жидкостный ракетный двигатель, выполненный по схеме с дожиганием генераторного газа. В ракетном двигателе замкнутой схемы один из компонентов газифицируется в газогенераторе за счёт сжигания при относительно невысокой температуре с небольшой частью другого компонента, и получаемый горячий газ используется в качестве рабочего тела турбины турбонасосного агрегата (ТНА). Сработавший на турбине генераторный газ затем подаётся в камеру сгорания двигателя, куда также подаётся оставшаяся часть неиспользованного компонента топлива. В камере сгорания завершается сжигание компонентов с созданием реактивной тяги.
В зависимости от того, какой именно компонент газифицируется полностью, различают двигатели закрытой схемы с окислительным генераторным газом (примеры: РД-253, РД-170/171, РД-180, РД-120, НК-33, РД0124 (РД0124А)[1]), с восстановительным генераторным газом (примеры: РД-0120, SSME, РД-857, LE-7/LE-7A) и с полной газификацией компонентов (РД-270, ЖРД Раптор).
Замкнутая схема ЖРД была впервые предложена А. М. Исаевым в 1949 году. Первый двигатель, созданный по этой схеме, был ЖРД 11Д33 (С1.5400), разработанный бывшим помощником Исаева Мельниковым, который использовался в создаваемых советских ракетах-носителях (РН).[2][3] Примерно в то же время, в 1959 году, Н. Д. Кузнецов начал работу над ЖРД с замкнутой схемой НК-9 для баллистической ракеты ГР-1 конструкции С. П. Королёва. Кузнецов позже развил эту схему в двигателях НК-15 и НК-33 для неудачной лунной РН Н1 и Н1Ф. Модификацию двигателя НК-33, ЖРД НК-33-1, планируется использовать на центральной ступени РН «Союз-2-3». Первый некриогенный ЖРД закрытой схемы РД-253 на компонентах гептил/N2O4 был разработан В. П. Глушко для РН «Протон» в 1963 году.
После неудачи программы разработки РН Н1 и Н1Ф, Кузнецову было приказано уничтожить технологию разработки ЖРД НК-33, но вместо этого десятки двигателей были законсервированы и помещены на склад. В 1990-х, специалисты Аэроджет посетили это предприятие, в ходе которого была достигнута договорённость о демонстрационных испытаниях двигателя в США для подтверждения параметров удельного импульса и других спецификаций.[4] Российский двигатель РД-180, закупаемый компанией Локхид Мартин и позже ULA для РН Атлас III и Атлас-5, также использует замкнутую схему с дожиганием генераторного газа, который перенасыщен окислителем.
Первым ЖРД замкнутой схемы на Западе был лабораторный двигатель, созданный в 1963 году немецким инженером Людвигом Бёльковым (англ. Ludwig Bölkow).
Маршевый двигатель космического челнока RS-25 (SSME) является ещё одним примером ЖРД замкнутой схемы и является первым двигателем данного типа, которые использовали компоненты кислород/водород. Его советским аналогом является РД-0120, использовавшийся в центральном блоке системы РН «Энергия».
В отличие от двигателей открытой схемы, в двигателе замкнутой схемы генераторный газ после срабатывания на турбине не выбрасывается в окружающую среду, а подаётся в камеру сгорания, участвуя таким образом в создании тяги и повышая эффективность двигателя (удельный импульс).
В двигателе закрытой схемы расход рабочего тела через турбину ТНА существенно выше, чем в двигателе открытой схемы, что делает возможным достижение более высоких давлений в камере сгорания. При этом размеры камеры сгорания уменьшаются, а степень расширения сопла увеличивается, что делает его более эффективным при работе в атмосфере.
Недостатком этой схемы являются тяжёлые условия работы турбины, более сложная система трубопроводов из-за необходимости транспортировки горячего генераторного газа к основной камере сгорания, что имеет большое влияние на общую конструкцию двигателя и усложняет управление его работой.
Замкнутая схема с полной газификацией компонентов[править | править код]
Замкнутая схема с полной газификацией компонентов топливаЗамкнутая схема с полной газификацией компонентов топлива представляет из себя разновидность замкнутой схемы, в которой осуществляется газификация всего топлива в двух газогенераторах: в одном небольшая часть горючего сжигается с почти полным расходом окислителя, а в другом — почти полный расход горючего сжигается с оставшейся частью окислителя. Получившиеся генераторные газы используются для привода турбонасосных агрегатов (ТНА).
Большой расход рабочего тела через турбины турбонасосов позволяет получать очень высокие давления в камере сгорания двигателя. При использовании данной схемы турбины могут иметь ме́ньшую рабочую температуру, так как через них проходит бо́льшая масса, что должно привести к более продолжительному функционированию двигателя и его бо́льшей надёжности. Наличие двух газогенераторов позволяет устанавливать топливные и окислительные насосы отдельно друг от друга, что снижает пожароопасность.
Полная газификация компонентов приводит также к более быстрым химическим реакциям сгорания в основной камере, что увеличивает удельный импульс ЖРД данной схемы на 10—20 сек — по сравнению с двигателями других схем. Например, двигатели РД-270 и РД-0244 (маршевый двигатель ДУ 3Д37ruen БРПЛ Р-29РМ) имеют близкое давление в камере сгорания (26,1/27,5 МПа), но за счет газификации компонентов топлива достигается увеличение эффективности до 7—8% (302/325 сек).
Сдерживающими факторами развития двигателей этого типа является их бо́льшая стоимость по сравнению с ЖРД других схем, а также допустимые температуры, при которых могут находиться химические компоненты до их сжигания в камере сгорания.
Проекты двигателей с полной газификацией[править | править код]
В СССР данная схема работы двигателя с полной газификацией компонентов была реализована в ЖРД РД-270 для окислительного и топливного независимых контуров в 1969 году.
Для пары водород/кислород по этой схеме НАСА и ВВС США проводили стендовые испытания «Интегрированного демонстратора силовой насадки»ruen.[5]
Компания SpaceX разрабатывает и проводит испытания двигателя Раптор, который использует метан и кислород.
Д-4 (двигатель) — Википедия
У этого термина существуют и другие значения, см. Д-4. Велосипедный двигатель Д-4 1957 годаМопедный двигатель Д-4 — специальный бензиновый двигатель, предназначенный для установки на велосипед. Разработан конструкторами Харьковского велозавода в середине 1950-х годов.
Д-4 (и его модификации) был единственным двигателем для велосипедов, который массово и серийно производился в СССР. Велосипедный двигатель серии «Д» был очень популярным в СССР, оборудованный им велосипед, в свое время, был самым доступным видом мототранспорта.[1]
Концепция оснащения велосипеда двигателем существовала в Европе уже с 1920-х годов. Основными особенностями веломоторов был их малый вес, незначительная, но достаточная мощность и малый расход горючего. Установка двигателей не требовала переработки велосипеда, хотя некоторые конструкции требовали замены стандартных велосипедных деталей на специальные.
Мотовелосипед В-902 производства Львовского велозавода оборудованный велосипедным двигателем Д-4, 1960 год.Особых успехов в производстве веломотор достигли немецкие фирмы ILO и Fichtel und Sachs, Lohmann, Solex,[2] французские Vélosolex и ряд других. На рубеже 1930-40-х годов определились основные концепции установки моторов на велосипед. В основном, двигатели монтировались на раму велосипеда над педальной кареткой, но изобретатели предлагали и ряд других оригинальных решений. Например наиболее распространенным в Германии было размещение двигателя на задней вилке велосипеда и соединения его цепной передачей с колесом. Такие способы позволяли устанавливать моторы практически на любой велосипед независимо от формы рамы и его конструкции.
В середине 1950-х годов, в ЦКТБ велостроения Харьковского велозавода, был разработан велосипедный двигатель ХВЗ Д-4, и после испытаний, была также выпущена небольшая серия этих моторов.[3] Харьковские конструкторы выбрали вариант размещения мотора над педальной кареткой, где он закреплялся в V-образном развале труб рамы. В то время, на ХВЗ уже было начато производство типовой модели мужского велосипеда В-110 «Прогресс», вскоре его начали выпускать почти все велозаводы СССР.[3] Велосипеды имели одинаковый угол соединения труб рамы над педальным кареткой. Таким образом двигатель легко монтировался на все модели, но установка на женские велосипеды не предусматривалась.
Дальнейшее массовое производство двигателя, с 1956 года, велось на Ленинградском заводе «Красный Октябрь».[4]
Составные части велосипедного двигателя Д-4Д-4 одноцилиндровый двухтактный бензиновый карбюраторный двигатель, рабочим объёмом 45 куб. см. Одноступенчатый редуктор мотора оснащался двухдисковой сухой муфтой сцепления. Газораспределение осуществляется через цилиндрический золотник (в пустотелой шейке коленчатого вала), цилиндр не имел съемной головки, что практически исключало его ремонтную расточку.
Зажигание рабочей смеси обеспечивало простое магнето, без обмотки для генератора фары. Мотор серии Д-4 оснащался небольшим разборным глушителем с приваренным выхлопным коленом. Топливом для двигателя была смесь бензина А-66 или А-72 с моторным маслом в соотношении по объёму 20: 1.
На картере двигателя было два вогнутых (под диаметр рамы) установочных места, которыми он крепился к раме велосипеда, над педальной кареткой, и закреплялся двумя хомутами. Хотя по замыслу производителя, ширина мотора не должна была мешать вращению педалей, но на практике, в большинстве случаев, приходилось самостоятельно немного разгибать педальные шатуны.
На заднее колесо велосипеда устанавливалась дополнительная большая звездочка цепной передачи. Для её монтажа нужно было сделать три небольших отпила на ступице колеса и закрепить болтами вместе с резиновыми прокладками и металлическими шайбами.
На передней наклонной трубе рамы монтировался топливный бачок. На руль устанавливалась поворотная ручка газа (справа) и слева рычаг выжима муфты сцепления. Рычаг был оснащен специальной защелкой, которая могла фиксировать его в выжатом состоянии муфты. Это давало возможность двигаться на велосипеде с отсоединенным двигателем (в случае поломки), или настраивать его работу не поднимая заднее колесо.
Двигатель запускался во время движения велосипеда. Достаточно было немного разогнаться и плавно отпустить сцепление, двигатель запускался и мог двигать велосипед с регулируемой скоростью до 40 км / ч.[1]
Комплект двигателя Д-4 первых выпусков для установки на велосипедДвигатель поступал в продажу как комплект для установки на велосипед. В его состав входили: двигатель, ручка газа и сцепления с тросами, бак, глушитель, защитный щиток цепи, накладка для защиты рамы велосипеда, цепь и звездочка с комплектом крепления её на колесе и набор инструментов.
В течение периода производства с 1956 по 1961 годы мотор незначительно модернизировался. Прежде всего был заменен карбюратор, на более эффективный и удобный в регулировании. Карбюратор моторов первых лет выпуска был технологически сложен в производстве и трудно настраивался. Также двигатель укомплектовали топливным баком другой конструкции, и большего объёма [1].
В 1961 году на замену двигателю Д-4 пришел мотор Д-5 увеличенной мощности до 1,2 л. с. Первые моторы Д-5 внешне почти не отличались от версии Д-4, и оснащались цилиндром без съемной головки и таким же коротким глушителем. Позже на нём устанавливали цилиндр со съемной головкой, оснащенной ребрами охлаждения, и комплектовали новым малошумным глушителем.
Некоторое количество моторов производили на Ковровском мотозаводе с маркировкой Д-4К и Д-5К.[5]
В начале 1970-х годов мотор значительно модернизировали до версии Д-6, а впоследствии Д-8 и Д-8Е. Двигатели были оборудованы магнето с генератором фары напряжением 6В, увеличена степень сжатия.
Звук велосипедного двигателя Д-4 1956 г.Эти агрегаты предназначались, в основном, для установки на легкие мопеды серии «Рига». Производство двигателей Д-8 было прекращено в конце 1990-х годов.
Кроме продажи в комплектах для велосипедов, двигатели Д-4 и Д-5 устанавливались и на мотовелосипеды (предшественник мопеда). Первыми в СССР были мотовелосипеды ХВЗ В-901,[1] его выпускал Харьковский велосипедный завод с 1958 года, и В-902 производства Львовского велозавода.[1]
Технические характеристики двигателя Д-4:
- Тип двигателя -одноцилиндровый двухтактный карбюраторный
- Диаметр цилиндра — 38 мм
- Двигатель Д-8, последняя модификация веломотора Д-4
- Ход поршня — 40 мм
- Рабочий объём — 45 см³
- Степень сжатия — 5,2
- Номинальная мощность при 4000-4500 об / мин. — 1 л. с.
- Расход топлива на 100 км, при скорости 20 км / ч. — 1,5 л
- Передаточное отношение / коленвал-ведущая зубчатка — 4,2: 1
- Передаточное отношение цепной передачи — 4,1: 1
- Вес комплекта мотора без топлива — около 9 кг
- Руководства по эксплуатации двигателей Д-4, Д-5, Д-6, Д-8
- Первенец советского велостроения: Очерк истории Харьк. велосипед. з-да. Х. Флаг, 1990. ISBN 5-7766-6263-7
- «Над чем работают конструкторы мотоциклов», журнал «За рулем»,№ 1/1958
- Маркович М. Е., Велосипедный ДВИГАТЕЛЬ Д-4, МАШГИЗ, Москва/Ленинград 1959 г.
- Маркович М. Е., Мотовелосипедные двигатели, Ленинград, «Машиностроение», 1975 год, 128 с., ил.
- ↑ 1 2 3 4 Маркович М. Е., Велосипедный ДВИГАТЕЛЬ Д-4, МАШГИЗ, Москва/Ленинград 1959 г.
- ↑ Manfred Nabinger: Deutsche Fahrrad Hilfsmotoren der vierziger und fünfziger Jahre. Podszun-Verlag 2008, ISBN 978-386133-494-1.
- ↑ 1 2 Первенец советского велостроения: Очерк истории Харьк. велосипед. з-да. -Х. Прапор, 1990.ISBN 5-7766-6263-7
- ↑ Руководства по эксплуатации двигателей Д-4
- ↑ Велосипедный двигатель Д4К. Техническое описание и инструкция по эксплуатации (1964).
Вечный двигатель — Википедия
У этого термина существуют и другие значения, см. Perpetuum Mobile.Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии (вечный двигатель первого рода) или позволяющее получать тепло от одного резервуара и полностью превращать его в работу (вечный двигатель второго рода)[2][3]. Этот тип машины невозможен, так как он нарушил бы первый или второй закон термодинамики[4][5][6][7]. Эти законы термодинамики применяются независимо от размера системы. Например, движения и вращения небесных тел, таких как планеты, могут казаться вечными, но на самом деле они подвержены многим процессам, которые медленно рассеивают их кинетическую энергию, таким как солнечный ветер, сопротивление межзвездной среды, гравитационное излучение и тепловое излучение, поэтому они не будут продолжать двигаться вечно[8][9].
Таким образом, машины, которые извлекают энергию из конечных источников, не будут работать бесконечно, потому что ими управляет энергия, запасённая в источнике, которая в конечном итоге будет исчерпана. Типичным примером являются устройства, работающие благодаря океаническим течениям, чья энергия в конечном итоге поступает от Солнца, которое само со временем сгорит. Были предложены машины, приводимые в действие более неясными источниками, но на них распространяются те же неизбежные законы, и в конечном итоге они будут прекращены.
В 2017 году были открыты новые состояния материи, темпоральные кристаллы, в которых в микроскопическом масштабе атомы компонентов находятся в непрерывном повторяющемся движении, что удовлетворяет буквальному определению «вечного движения»[10][11][12][13]. Однако, они не представляют собой вечные двигатели в традиционном смысле и не нарушают термодинамические законы, потому что они находятся в своем квантовом основном состоянии, поэтому никакая энергия не может быть извлечена из них; у них есть «движение без энергии».
Современная классификация вечных двигателей
- Вечный двигатель первого рода — неограниченно долго действующее устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
- Вечный двигатель второго рода — неограниченно долго действующая машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики[14].
И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно. В частности, второе начало термодинамики может быть сформулировано как один из следующих (эквивалентных) постулатов:
- Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
- Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.
Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна[уточнить].
Видеоурок: вечный двигательИстория
Индийский или арабский вечный двигатель с небольшими косо закреплёнными сосудами, частично наполненными ртутьюПопытки исследования места, времени и причины возникновения идеи вечного двигателя — задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде[15]. В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своём стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикреплёнными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещённых на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе»[16]. Первые проекты вечного двигателя в Европе относятся к эпохе развития механики, приблизительно к XIII веку. К XVI—XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран.
Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя, но в целом он скептически относился к идее вечного двигателя.[16]
Неудачные конструкции вечных двигателей из истории
Рис. 1. Одна из древнейших конструкций вечного двигателяНа рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо, в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага, должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.
Однако, если такое колесо изготовить, оно останется неподвижным. Причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.
Рис. 2. Конструкция вечного двигателя, основанного на законе АрхимедаНа рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда. Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.
Здесь не учтено следующее: выталкивающая сила — это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет уравновешивать или превосходить силу, действующую на остальные баки.
Патенты и авторские свидетельства на вечный двигатель
В 1775 году Парижская академия наук приняла решение не рассматривать проекты вечного двигателя из-за очевидной невозможности их создания[17]. Патентное ведомство США не выдаёт патенты на perpetuum mobile уже более ста лет[18]. Тем не менее, в Международной патентной классификации сохраняются разделы для гидродинамических (раздел F03B 17/04) и электродинамических (раздел H02K 53/00) вечных двигателей.
Известные «изобретатели» вечных двигателей
Проект вечного двигателя ОрфиреусаПсевдовечный двигатель
Псевдовечный двигатель (даровой двигатель, мнимый вечный двигатель[19], псевдо-вечный двигатель[20]) — механизм, способный работать неопределённо долго (до износа своих составных частей) без вмешательства человека, но, в отличие от вечного двигателя, не нарушающий законов термодинамики. Энергию он черпает из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада).
Разновидности
Известны псевдовечные двигатели, использующие: энергию периодических суточных колебаний атмосферного давления[21][22];; энергию теплового расширения вследствие суточных колебаний температуры[23][22]; энергию распада радия[24]; энергию магнитного поля постоянного магнита[25]; солнечную энергию (магнитно-тепловой двигатель)[26][27].
Экономическая эффективность
Я. И. Перельман[23] и Н. В. Гулиа[22] пишут, что даровые двигатели экономически невыгодны для промышленного применения из-за малой стоимости производимой энергии по сравнению с капитальными вложениями в их создание и обслуживание.
Например, для завода часов на сутки работы нужна энергия 1,5{\displaystyle 1{,}5} Дж. Если этот механизм проработает 10{\displaystyle 10} лет, то за свой срок службы он выработает энергии 1,5⋅365⋅10=5500{\displaystyle 1{,}5\cdot 365\cdot 10=5500} Дж. При стоимости механизма в 10{\displaystyle 10} долларов себестоимость производства одного киловатт-часа энергии с его помощью составит 3,6⋅1065500⋅10=6,5{\displaystyle {\frac {3{,}6\cdot 10^{6}}{5500}}\cdot 10=6{,}5} тыс. долларов[22].
В. М. Бродянский считает этот вывод неверным, поскольку стоимость устройства не пропорциональна его размерам[20].
Пример псевдовечного двигателя 2-го рода
Анализ конкретной конструкции вечного двигателя 2-го рода может представлять собой нетривиальную задачу, особенно если речь идёт о конструкции сложной или такой, принцип действия которой на первый взгляд вообще непонятен, либо потоки энергии и их источник неочевидны. Зафиксируем, например, один конец работающей на изгиб биметаллической пластины, а ко второму концу подвесим груз и поместим получившуюся конструкцию на открытый воздух. За счёт колебаний температуры пластина будет изгибаться/распрямляться, а груз подниматься и опускаться, то есть устройство будет совершать работу. Заменив груз на храповой механизм, получим механический привод, способный выполнять полезную работу за счёт извлечения энергии из единственного теплового резервуара — окружающей среды. Но поскольку окружающая среда попеременно выступает в качестве то нагревателя, то охладителя, противоречие со вторым законом термодинамики отсутствует. Таким образом, рассмотренная конструкция представляет собой не вечный, а псевдовечный двигатель 2-го рода[28].
См. также
Примечания
- ↑ Перельман Я. И. В поисках вечного двигателя (Въ поискахъ вѣчнаго двигателя). — «Природа и люди», 1915, № 32, с. 508—510. На странице 509.
- ↑ Большая российская энциклопедия
- ↑ [[Большая советская энциклопедия]], 3-е изд. (неопр.) (недоступная ссылка). Дата обращения 13 мая 2018. Архивировано 13 мая 2018 года.
- ↑ Derry, Gregory N. What Science Is and How It Works (неопр.). — Princeton University Press, 2002. — С. 167. — ISBN 978-1400823116.
- ↑ Roy, Bimalendu Narayan. Fundamentals of Classical and Statistical Thermodynamics (англ.). — John Wiley & Sons, 2002. — P. 58. — ISBN 978-0470843130.
- ↑ Definition of perpetual motion (неопр.). Oxforddictionaries.com (22 ноября 2012). Дата обращения 27 ноября 2012.
- ↑ Sébastien Point, Free energy: when the web is freewheeling, Skeptikal Inquirer, January February 2018
- ↑ Taylor, J. H.; Weisberg, J. M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16 (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 1989. — Vol. 345. — P. 434—450. — DOI:10.1086/167917. — Bibcode: 1989ApJ…345..434T.
- ↑ Weisberg, J. M.; Nice, D. J.; Taylor, J. H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16 (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2010. — Vol. 722, no. 2. — P. 1030—1034. — DOI:10.1088/0004-637X/722/2/1030. — Bibcode: 2010ApJ…722.1030W. — arXiv:1011.0718v1.
- ↑ Grossman, Lisa Death-defying time crystal could outlast the universe (неопр.). newscientist.com. New Scientist (18 января 2012). Архивировано 2 февраля 2017 года.
- ↑ Cowen, Ron «Time Crystals» Could Be a Legitimate Form of Perpetual Motion (неопр.). scientificamerican.com. Scientific American (27 февраля 2012). Архивировано 2 февраля 2017 года.
- ↑ Powell, Devin. Can matter cycle through shapes eternally? (англ.) // Nature. — 2013. — ISSN 1476-4687. — DOI:10.1038/nature.2013.13657. Архивировано 3 февраля 2017 года.
- ↑ Gibney, Elizabeth. The quest to crystallize time (англ.) // Nature. — 2017. — Vol. 543, no. 7644. — P. 164—166. — ISSN 0028-0836. — DOI:10.1038/543164a. — Bibcode: 2017Natur.543..164G. Архивировано 13 марта 2017 года.
- ↑ Ю. Румер, М. Рывкин. §9. Круговые процессы. Цикл Карно // Термодинамика, статистическая физика и кинетика. — Рипол Классик, 1977. — ISBN 9785458513012.
- ↑ ВЕЧНЫЙ ДВИГАТЕЛЬ Наиболее ранние сведения о вечных двигателях
- ↑ 1 2 Стефанова А. Суета сует, или краткая летопись изысканий вечного движения // Мир измерений. 2013. № 6. С. 62-64.
- ↑ Histoire de l’Académie royale des sciences, 1775, p. 61, 65
- ↑ «Вечный двигатель» Архивная копия от 26 апреля 2018 на Wayback Machine PrimeInfo
- ↑ Вечный двигатель // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ 1 2 Бродянский В.М. Вечный двигатель: прежде и теперь. — М., 2001. — С. 225.
- ↑ Перельман, 1972, с. 104—105.
- ↑ 1 2 3 4 Гулиа Н. В. Удивительная физика. — М., ЭНАС-КНИГА, 2014. — ISBN 978-5-91921-236-2. — с. 270—274
- ↑ 1 2 Перельман, 1972, с. 114—116.
- ↑ Я. И. Перельман Занимательная физика. Книга 2.
- ↑ Томилин А. К., Аксенова Н. В., Шевчук А. С. Анализ одного «вечного» двигателя // Молодой ученый. — 2015. — № 10. — С. 330—333.
- ↑ Пресняков А. Г. Авторское свидетельство СССР от 28.02.1978 г. Магнитно-тепловой двигатель
- ↑ Алиев Ш. М., Каммилов И. К., Алиев М. Ш. Преобразователь солнечной энергии в механическую на основе магнитно-теплового двигателя // ДАН РФ 2009 № 3
- ↑ Александров Н. Е. и др., ч. 2, 2012, с. 108.
Литература
- Александров Н. Е., Богданов А. И., Костин К. И. и др. Основы теории тепловых процессов и машин. Часть II / Под ред. Н. И. Прокопенко. — 4-е изд. (электронное). — М.: Бином. Лаборатория знаний, 2012. — 572 с. — ISBN 978-5-9963-0834-7.
- Бродянский В. М. Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии. — М.: Энергоатомиздат, 1989. — 256 с. — (Научно-популярная библиотека школьника). — ISBN 5-283-00058-3.
- Вознесенский Н. Н. О машинах вечного движения. М., 1926.
- Ихак-Рубинер Ф. Вечный двигатель. М., 1922.
- Кирпичёв В. Л. Беседы по механике. М.: ГИТЛ, 1951.
- Лермантов В. В. Вечное движение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
- Михал С. Вечный двигатель вчера и сегодня / Пер. с чеш. И. Е. Зино; Предисл. А. Т. Григорьяна. — М.: Мир, 1984. — 256 с. — (В мире науки и техники). — 100 000 экз.
- Орд-Хьюм А. Вечное движение. История одной навязчивой идеи. М.: Знание, 1980.
- Перельман Я. И. Занимательная физика. Кн. 1 и 2. М.: Наука, 1979.
- Петрунин Ю. Ю. Почему идея вечного двигателя не существовала в античности? (недоступная ссылка с 16-05-2018 [623 дня]) // Петрунин Ю. Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. — М.: КДУ, 2006, с. 75-82.
- Савельев И. В. Курс общей физики в 3-х томах. Том 1. Механика. Молекулярная физика. — 12-е изд., стереотип. — СПб.—М.—Краснодар: Лань, 2016. — 432 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-0630-2. Архивная копия от 22 сентября 2017 на Wayback Machine (недоступная ссылка с 16-05-2018 [623 дня])
- Вечный двигатель // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Я. И. Перельман. Занимательная физика. Книга 1. — М.: Наука, 1972. — 215 с.
Ссылки
Вентильный двигатель — Википедия
Рис. 1. Принцип работы трёхфазного вентильного двигателяВентильный электродвигатель (ВД) — это разновидность электродвигателя постоянного тока, у которого щеточно-коллекторный узел (ЩКУ) заменен полупроводниковым коммутатором, управляемым датчиком положения ротора[1].
Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией (ШИМ).
Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще, чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).
В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесколлекторным двигателем постоянного тока, если противо-ЭДС трапецеидальная.
В англоязычной литературе такие двигатели обычно не рассматриваются отдельно от электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).
Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.
Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока, которые характеризуются рядом изъянов, связанных со ЩКУ, таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и пр. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.
Рис. 2. Структура двухфазного вентильного двигателя с синхронной машиной с постоянными магнитами на роторе. ПК — преобразователь координат, УМ — усилитель мощности,СЭМП — синхронный электромеханический преобразователь (синхронная машина), ДПР — датчик положения ротора.
Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, коммутируемый ключами (вентилями), управляемыми микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.
На входы преобразователя координат (ПК) поступают напряжения постоянного тока uq{\displaystyle u_{q}}, действие которого аналогично напряжению якоря двигателя постоянного тока, и ud{\displaystyle u_{d}}, аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).
Сигналы ud,uq{\displaystyle u_{d},u_{q}}, представляют собой проекции вектора напряжения управления Uy→={ud,uq}{\displaystyle {\vec {U_{y}}}=\{u_{d},u_{q}\}} на оси вращающейся системы координат {d,q}{\displaystyle \{d,q\}}, связанной с ротором ВД (а точнее — с вектором потока ротора). Преобразователь координат осуществляет преобразование проекций ud,uq{\displaystyle u_{d},u_{q}} в проекции uα,uβ{\displaystyle u_{\alpha },u_{\beta }} неподвижной системы координат {α,β}{\displaystyle \{\alpha ,\beta \}}, связанной со статором.
Как правило, в системах управления электропривода задаётся ud=0{\displaystyle u_{d}=0}[3], при этом уравнения преобразования координат принимают вид[4]:
uα=−uq⋅sinθ,{\displaystyle u_{\alpha }=-u_{q}\cdot \sin {\theta },}
uβ={\displaystyle u_{\beta }=} uq⋅cosθ,{\displaystyle u_{q}\cdot \cos {\theta },}
где θ{\displaystyle \theta } — угол поворота ротора (и системы вращающихся координат) относительно оси α{\displaystyle \alpha } неподвижной системы координат. Для измерения мгновенного значения угла θ{\displaystyle \theta } на валу ВД устанавливается датчик положения ротора (ДПР).
По сути, uq{\displaystyle u_{q}} является в этом случае заданием значения амплитуды фазных напряжений. А ПК, осуществляя позиционную модуляцию сигнала uq{\displaystyle u_{q}}, формирует гармонические сигналы uα,uβ{\displaystyle u_{\alpha },u_{\beta }}, которые усилитель мощности (УМ) преобразует в фазные напряжения uA,uB{\displaystyle u_{A},u_{B}}. Синхронный двигатель в составе вентильного двигателя часто называют синхронным электромеханическим преобразователем (СЭМП).
Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).
Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.
Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях за счёт удаления дорогостоящего и зачастую громоздкого датчика положения уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.
В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.
Вентильные двигатели призваны объединить в себе лучшие качества двигателей переменного тока и двигателей постоянного тока. Это обусловливает их достоинства.
Достоинства:
- Широкий диапазон изменения частоты вращения
- Бесконтактность и отсутствие узлов, требующих частого обслуживания (коллектора)
- Возможность использования во взрывоопасной и агрессивной среде
- Большая перегрузочная способность по моменту
- Высокие энергетические показатели (КПД выше 90 %)
- Большой срок службы и высокая надёжность за счёт отсутствия скользящих электрических контактов.
Вентильные двигатели характеризуются и некоторыми недостатками, главный из которых — высокая стоимость. Однако, говоря о высокой стоимости, следует учитывать и тот факт, что вентильные двигатели обычно используются в дорогостоящих системах с повышенными требованиями по точности и надёжности.
Недостатки:
- Высокая стоимость двигателя, обусловленная частым использованием дорогостоящих постоянных магнитов в конструкции ротора. Стоимость электропривода с ВД, однако, сопоставима со стоимостью аналогичного электропривода на основе ДПТ с независимым возбуждением (регулировочные характеристики такого двигателя и ВД сопоставимы). Вообще говоря, в вентильном двигателе может быть использован и ротор с электромагнитным возбуждением, однако это сопряжено с комплексом практических неудобств. В ряде случаев предпочтительным оказывается применение асинхронного двигателя с преобразователем частоты.
- Относительно сложная структура двигателя и управление им.
Конструктивно современные вентильные приводы состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост).
Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.
Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка, и ротора (обычно на постоянных магнитах).
В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.
Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.
Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.
Статор[править | править код]
Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.
Ротор[править | править код]
По расположению ротора вентильные двигатели делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner).
Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.
Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.
Датчик положения ротора[править | править код]
Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.
Обычно фотоэлектрический датчик содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.
Система управления[править | править код]
Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.
Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.
Благодаря высокой надёжности и хорошей управляемости, вентильные двигатели применяются в широком спектре приложений: от компьютерных вентиляторов и CD/DVD-приводов до роботов и космических ракет.
Широкое применение ВД нашли в промышленности, особенно в системах регулирования скорости с большим диапазоном и высоким темпом пусков, остановок и реверса; авиационной технике, автомобильном машиностроении, биомедицинской аппаратуре, бытовой технике и пр. Также, этот тип двигателей часто используется в двигателях квадрокоптеров.
- Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 2. Электромагнитные устройства и электрические машины. — М.: Энергоатомиздат, 1997. — 288 с. — ISBN 5-283-05005-X.
- ↑ Герман-Галкин С. Г. Глава 9. Модельное проектирование синхронных мехатронных систем // Matlab & Simulink. Проектирование мехатронных систем на ПК.. — СПб.: КОРОНА-Век, 2008. — 368 с. — ISBN 978-5-903383-39-9.
- ↑ Борцов Ю.А., Соколовский Г.Г. Глава 8. Адаптивно-модальное управление в следящих системах с бесконтактными моментными двигателями // Автоматизированный электропривод с упругими связями. — 2-ое изд., перераб. и доп.. — СПб: Энергоатомиздат, 1992. — 288 с. — ISBN 5-283-04544-7.
- ↑ Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: «Академия», 2006. — 272 с. — ISBN 5-7695-2306-9.
- ↑ Микеров А.Г. Управляемые вентильные двигатели малой мощности: Учебное пособие.. — СПб: СПбГЭТУ, 1997. — 64 с.